Integrative analysis of transcriptome and metabolome reveals flavonoid biosynthesis regulation in Rhododendron pulchrum petals

被引:20
|
作者
Xia, Xi [1 ]
Gong, Rui [1 ]
Zhang, Chunying [1 ]
机构
[1] Shanghai Bot Garden, Shanghai Urban Plant Resources Dev & Applicat Eng, Shanghai, Peoples R China
关键词
Rhododendron pulchrum; Metabolome; Transcriptome; Flavonoid biosynthesis; FLOWER COLOR; ANTHOCYANIN BIOSYNTHESIS; PROANTHOCYANIDIN BIOSYNTHESIS; GENE-EXPRESSION; UVR8; INTERACTS; SYNTHASE GENE; IDENTIFICATION; PIGMENTS; CONSTITUENTS; ACTIVATION;
D O I
10.1186/s12870-022-03762-y
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Background Color is the major ornamental feature of the Rhododendron genus, and it is related to the contents of flavonoid in petals. However, the regulatory mechanism of flavonoid biosynthesis in Rhododendron pulchrum remains unknown. The transcriptome and metabolome analysis of Rhododendron pulchrum with white, pink and purple color in this study aimed to reveal the mechanism of flavonoid biosynthesis and to provide insight for improving the petal color. Results Flavonoids and flavonols are the major components of flavonoid metabolites in R.pulchrum, such as laricitrin, apigenin, tricin, luteolin, isoorientin, isoscutellarein, diosmetin and their glycosides derivatives. With transcriptome and metabolome analysis, we found CHS, FLS, F3'H, F3 ' 5'H, DFR, ANS, GT, FNS, IFR and FAOMT genes showed significantly differential expression in cultivar 'Zihe'. FNS and IFR were discovered to be associated with coloration in R.pulchrum for the first time. The FNS gene existed in the form of FNSI. The IFR gene and its related metabolites of medicarpin derivatives were highly expressed in purple petal. In cultivar 'Fenhe', up-regulation of F3'H and F3 ' 5'H and down-regulation of 4CL, DFR, ANS, and GT were associated with pink coloration. With the transcription factor analysis, a subfamily of DREBs was found to be specifically enriched in pink petals. This suggested that the DREB family play an important role in pink coloration. In cultivars 'Baihe', flavonoid biosynthesis was inhibited by low expression of CHS, while pigment accumulation was inhibited by low expression of F3 ' 5'H, DFR, and GT, which led to a white coloration. Conclusions By analyzing the transcriptome and metabolome of R.pulchrum, principal differential expression genes and metabolites of flavonoid biosynthesis pathway were identified. Many novel metabolites, genes, and transcription factors associated with coloration have been discovered. To reveal the mechanism of the coloration of different petals, a model of the flavonoid biosynthesis pathway of R.pulchrum was constructed. These results provide in depth information regarding the coloration of the petals and the flavonoid metabolism of R.pulcherum. The study of transcriptome and metabolome profiling gains insight for further genetic improvement in Rhododendron.
引用
收藏
页数:20
相关论文
共 50 条
  • [21] Integrative Analysis of the Metabolome and Transcriptome Provides Insights into the Mechanisms of Flavonoid Biosynthesis in Quinoa Seeds at Different Developmental Stages
    Wang, Qianchao
    Yao, Lan
    Li, Qunying
    Xie, Heng
    Guo, Yirui
    Huang, Tingzhi
    Zhang, Xuesong
    Liu, Junna
    Zhang, Ping
    Li, Li
    Qin, Peng
    METABOLITES, 2022, 12 (10)
  • [22] Integrative Metabolome and Transcriptome Analysis of Flavonoid Biosynthesis Genes in Broussonetia papyrifera Leaves From the Perspective of Sex Differentiation
    Jiao, Peng
    Chaoyang, Li
    Wenhan, Zhai
    Jingyi, Dai
    Yunlin, Zhao
    Zhenggang, Xu
    FRONTIERS IN PLANT SCIENCE, 2022, 13
  • [23] Metabolome and Transcriptome Association Analysis Reveals Regulation of Flavonoid Biosynthesis by Overexpression of LaMIR166a in Larix kaempferi (Lamb.) Carr
    Fan, Yanru
    Li, Zhexin
    Zhang, Lifeng
    Han, Suying
    Qi, Liwang
    FORESTS, 2020, 11 (12): : 1 - 16
  • [24] Integration of transcriptome and metabolome analyses reveals sorghum roots responding to cadmium stress through regulation of the flavonoid biosynthesis pathway
    Jiao, Zhiyin
    Shi, Yannan
    Wang, Jinping
    Wang, Zhifang
    Zhang, Xing
    Jia, Xinyue
    Du, Qi
    Niu, Jingtian
    Liu, Bocheng
    Du, Ruiheng
    Ji, Guisu
    Cao, Junfeng
    Lv, Peng
    FRONTIERS IN PLANT SCIENCE, 2023, 14
  • [25] Integrative analysis of the metabolome and transcriptome reveals the molecular regulatory mechanism of isoflavonoid biosynthesis in Ormosia henryi Prain
    Wang, Jiaqi
    Li, Lu
    Wang, Zhihua
    Feng, Anran
    Li, Huiling
    Qaseem, Mirza Faisal
    Liu, Liting
    Deng, Xiaomei
    Wu, Ai-Min
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2023, 246
  • [26] Integrative Analysis of the Transcriptome and Metabolome Reveals the Developmental Mechanisms and Metabolite Biosynthesis of the Tuberous Roots of Tetrastigma hemsleyanum
    Hang, Suni
    Xu, Pan
    Zhu, Sheng
    Ye, Min
    Chen, Cuiting
    Wu, Xiaojun
    Liang, Weiqing
    Pu, Jinbao
    MOLECULES, 2023, 28 (06):
  • [27] An Integrated Metabolome and Transcriptome Analysis Reveal the Regulation Mechanisms of Flavonoid Biosynthesis in a Purple Tea Plant Cultivar
    Song, SaSa
    Tao, Yu
    Gao, LongHan
    Liang, HuiLing
    Tang, DeSong
    Lin, Jie
    Wang, YuChun
    Gmitter, Frederick G.
    Li, ChunFang
    FRONTIERS IN PLANT SCIENCE, 2022, 13
  • [28] An Integrative Analysis of Metabolome and Transcriptome Reveals the Molecular Regulatory Mechanism of the Accumulation of Flavonoid Glycosides in Different Cyclocarya paliurus Ploidies
    Yu, Yanhao
    Qu, Yinquan
    Wang, Shuyang
    Wang, Qian
    Shang, Xulan
    Fu, Xiangxiang
    FORESTS, 2023, 14 (04):
  • [29] Transcriptome analysis reveals biosynthesis and regulation of flavonoid in common bean seeds during grain filling
    Tapia, Gerardo
    Gonzalez, Maximo
    Mendez, Jose
    Schmeda-Hirschmann, Guillermo
    Arrey, Oscar
    Carrasco, Basilio
    Nina, Nelida
    Salas-Burgos, Alexis
    Jimenez-Aspee, Felipe
    Arevalo, Barbara
    BMC PLANT BIOLOGY, 2024, 24 (01):
  • [30] Comparative Metabolomic and Transcriptome Analysis Reveal Distinct Flavonoid Biosynthesis Regulation Between Petals of White and Purple Phalaenopsis amabilis
    Xiaoqing Meng
    Ge Li
    Lingya Gu
    Yu Sun
    Zongyun Li
    Jingran Liu
    Xiaoqing Wu
    Tingting Dong
    Mingku Zhu
    Journal of Plant Growth Regulation, 2020, 39 : 823 - 840