Investigation of lead-free MASnI3-MASnIBr2 tandem solar cell: Numerical simulation

被引:52
作者
Abdelaziz, S. [1 ]
Zekry, A. [1 ]
Shaker, A. [2 ]
Abouelatta, M. [1 ]
机构
[1] Ain Shams Univ, Fac Engn, Elect & Commun Dept, Cairo, Egypt
[2] Ain Shams Univ, Fac Engn, Engn Phys & Math Dept, Cairo, Egypt
关键词
Tandem solar cell; Current matching; All-lead free; Tin-based perovskite; SCAPS; Power conversion efficiency (PCE); PHOTOVOLTAIC APPLICATIONS; HALIDE PEROVSKITES; EFFICIENCY; TIN; JUNCTION; PHASE; FILMS; TOP;
D O I
10.1016/j.optmat.2021.111893
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Lead-free perovskite materials have attracted noteworthy interest for photovoltaics as they are free from toxicity and instability issues encountered in lead-based perovskites. In this work, we report on a simulation study of a two-terminal monolithic all lead-free tandem solar cell. The (MASnI(3)) cell with 1.3 eV bandgap is used as a bottom cell and the top cell is (MASnIBr(2)) with a bandgap of 1.75 eV. The calibration of the standalone bottom and top cells initially gives a conversion power efficiency (PCE) of 5.42% and 5.74%, respectively. After comprising these two initial sub-cells in a two-terminal all lead-free monolithic tandem cell, a tandem efficiency of 7.66% is obtained with a matching current is 10.36 mA/cm(2) in this case. Based on parametric analysis, the values of perovskite doping, perovskite defect density and ETL/HTL affinity are optimized. The PCE of individual cells after enhancement has increased to 11.01% and 10.17% for bottom and top cells, respectively. As a result of the enhancement of the two cells, the tandem efficiency improves to 15.66% and the matching current also increases to 13.94 mA/cm(2). In addition, the current matching point is tracked while changing the band gaps of bottom and top cells in the ranges of (1.1 eV-1.4 eV) and (1.55 eV-1.85 eV), and for the thicknesses in the ranges (150 nm-400 nm) and (150 nm-500 nm), respectively. The simulations done in this paper shows the significant influence of current matching point on the tandem cell performance. All simulations are performed by using SCAPS-1D under AM1.5G illumination.
引用
收藏
页数:12
相关论文
共 61 条
[1]   Investigating the performance of formamidinium tin-based perovskite solar cell by SCAPS device simulation [J].
Abdelaziz, S. ;
Zekry, A. ;
Shaker, A. ;
Abouelatta, M. .
OPTICAL MATERIALS, 2020, 101
[2]   Possible efficiency boosting of non-fullerene acceptor solar cell using device simulation [J].
Abdelaziz, W. ;
Shaker, A. ;
Abouelatta, M. ;
Zekry, A. .
OPTICAL MATERIALS, 2019, 91 :239-245
[3]   Predicted Lead-Free Perovskites for Solar Cells [J].
Ali, Roshan ;
Hou, Guo-Pao ;
Zhu, Zhen-Gang ;
Yan, Qing-Bo ;
Zheng, Qing-Rong ;
Su, Gang .
CHEMISTRY OF MATERIALS, 2018, 30 (03) :718-728
[4]   Low temperature perovskite solar cells with an evaporated TiO2 compact layer for perovskite silicon tandem solar cells [J].
Bett, Alexander J. ;
Schulze, Patricia S. C. ;
Winkler, Kristina ;
Gasparetto, Jacopo ;
Ndione, Paul F. ;
Bivour, Martin ;
Hinsch, Andreas ;
Kohlstaedt, Markus ;
Lee, Seunghun ;
Mastroianni, Simone ;
Mundt, Laura E. ;
Mundus, Markus ;
Reichel, Christian ;
Richter, Armin ;
Veit, Clemens ;
Wienands, Karl ;
Wuerfel, Uli ;
Veurman, Welmoed ;
Glunz, Stefan W. ;
Hermle, Martin ;
Goldschmidt, Jan Christoph .
7TH INTERNATIONAL CONFERENCE ON SILICON PHOTOVOLTAICS, SILICONPV 2017, 2017, 124 :567-576
[5]   Analysis of tandem solar cell efficiencies under AM1.5G spectrum using a rapid flux calculation method [J].
Bremner, S. P. ;
Levy, M. Y. ;
Honsberg, C. B. .
PROGRESS IN PHOTOVOLTAICS, 2008, 16 (03) :225-233
[6]   Minimizing Current and Voltage Losses to Reach 25% Efficient Monolithic Two-Termina Perovskite-Silicon Tandem Solar Cells [J].
Bush, Kevin A. ;
Manzoor, Salman ;
Frohna, Kyle ;
Yu, Zhengshan J. ;
Raiford, James A. ;
Palmstrom, Axel F. ;
Wang, Hsin-Pin ;
Prasanna, Rohit ;
Bent, Stacey F. ;
Holman, Zachary C. ;
McGehee, Michael D. .
ACS ENERGY LETTERS, 2018, 3 (09) :2173-2180
[7]   23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability [J].
Bush, Kevin A. ;
Palmstrom, Axel F. ;
Yu, Zhengshan J. ;
Boccard, Mathieu ;
Cheacharoen, Rongrong ;
Mailoa, Jonathan P. ;
McMeekin, David P. ;
Hoye, Robert L. Z. ;
Bailie, Colin D. ;
Leijtens, Tomas ;
Peters, Ian Marius ;
Minichetti, Maxmillian C. ;
Rolston, Nicholas ;
Prasanna, Rohit ;
Sofia, Sarah ;
Harwood, Duncan ;
Ma, Wen ;
Moghadam, Farhad ;
Snaith, Henry J. ;
Buonassisi, Tonio ;
Holman, Zachary C. ;
Bent, Stacey F. ;
McGehee, Michael D. .
NATURE ENERGY, 2017, 2 (04)
[8]   Highly Efficient Polymer Tandem Cells and Semitransparent Cells for Solar Energy [J].
Chang, Chih-Yu ;
Zuo, Lijian ;
Yip, Hin-Lap ;
Li, Chang-Zhi ;
Li, Yongxi ;
Hsu, Chain-Shu ;
Cheng, Yen-Ju ;
Chen, Hongzheng ;
Jen, Alex K-Y. .
ADVANCED ENERGY MATERIALS, 2014, 4 (07)
[9]   III-V multijunction solar cells for concentrating photovoltaics [J].
Cotal, Hector ;
Fetzer, Chris ;
Boisvert, Joseph ;
Kinsey, Geoffrey ;
King, Richard ;
Hebert, Peter ;
Yoon, Hojun ;
Karam, Nasser .
ENERGY & ENVIRONMENTAL SCIENCE, 2009, 2 (02) :174-192
[10]   Device simulation of lead-free CH3NH3SnI3 perovskite solar cells with high efficiency [J].
Du, Hui-Jing ;
Wang, Wei-Chao ;
Zhu, Jian-Zhuo .
CHINESE PHYSICS B, 2016, 25 (10)