FINITE-TIME CONVERGENCE OF SOLUTIONS OF HAMILTON-JACOBI EQUATIONS

被引:1
作者
Wang, Kaizhi [1 ]
Yan, Jun [2 ]
Zhao, Kai [2 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Math Sci, Shanghai 200240, Peoples R China
[2] Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
关键词
Hamilton-Jacobi equations; viscosity solutions; finite-time convergence; weak KAM theory; VISCOSITY SOLUTIONS;
D O I
10.1090/proc/15736
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with the long-time behavior of viscosity solutions of evolutionary contact Hamilton-Jacobi equations w(t) + H(x, w, w(x)) = 0, where H(x, u, p) is strictly decreasing in u and satisfies Tonelli conditions in p. We show that each viscosity solution of the ergodic contact Hamilton-Jacobi equation H(x, u, u(x)) = 0 can be reached by many different viscosity solutions of the above evolutionary equation in a finite time.
引用
收藏
页码:1187 / 1196
页数:10
相关论文
共 11 条
[1]  
[Anonymous], 2008, The Weak KAM Theorem in Lagrangian Dynamics
[2]  
Cannarsa P., 2019, Trends in Control Theory and Partial Differential Equations, V32, P39, DOI [10.1007/978-3-030-17949-63, DOI 10.1007/978-3-030-17949-63]
[3]   Herglotz' variational principle and Lax-Oleinik evolution [J].
Cannarsa, Piermarco ;
Cheng, Wei ;
Jin, Liang ;
Wang, Kaizhi ;
Yan, Jun .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2020, 141 :99-136
[4]   SOME PROPERTIES OF VISCOSITY SOLUTIONS OF HAMILTON-JACOBI EQUATIONS [J].
CRANDALL, MG ;
EVANS, LC ;
LIONS, PL .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1984, 282 (02) :487-502
[5]   VISCOSITY SOLUTIONS OF HAMILTON-JACOBI EQUATIONS [J].
CRANDALL, MG ;
LIONS, PL .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 277 (01) :1-42
[6]  
Fathi A, 2014, PROCEEDINGS OF THE INTERNATIONAL CONGRESS OF MATHEMATICIANS (ICM 2014), VOL III, P597
[7]  
Ishii Hitoshi, 2006, Eur. Math. Soc., VIII, P213
[8]   Weak KAM solutions of Hamilton-Jacobi equations with decreasing dependence on unknown functions [J].
Wang, Kaizhi ;
Wang, Lin ;
Yan, Jun .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 286 :411-432
[9]   Aubry-Mather Theory for Contact Hamiltonian Systems [J].
Wang, Kaizhi ;
Wang, Lin ;
Yan, Jun .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2019, 366 (03) :981-1023
[10]   Variational principle for contact Hamiltonian systems and its applications [J].
Wang, Kaizhi ;
Wang, Lin ;
Yan, Jun .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2019, 123 :167-200