Synthetized inertial measurement units (IMUs) to evaluate the placement of wearable sensors on human body for motion recognition

被引:7
|
作者
Hoareau, Damien [1 ,2 ]
Jodin, Gurvan [1 ,2 ]
Chantal, Pierre-Antoine [2 ]
Bretin, Sara [2 ,3 ]
Prioux, Jacques [4 ]
Razan, Florence [1 ,2 ,3 ]
机构
[1] Ecole Normale Super Rennes, SATIE UMR CNRS 8029, CSEE, Ave Robert Schuman, F-35170 Bruz, France
[2] Ecole Normale Super Rennes, Dept Mechatron, Ave Robert Schuman, F-35170 Bruz, France
[3] Univ Rennes 1, IETR UMR CNRS 6164, OASIS, Ave Gen Leclerc, F-35042 Rennes, France
[4] Fac Sport Sci, Movement Sport & Hlth Lab, EA 1274, F-35000 Rennes, France
来源
JOURNAL OF ENGINEERING-JOE | 2022年 / 2022卷 / 05期
关键词
ERRORS;
D O I
10.1049/tje2.12137
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Movement data from athletes are useful to quantify performance or more specifically the workload. Inertial measurement units (IMUs) are useful sensors to quantify body movements. Sensor placement on human body is still an open question that this paper focuses on. A method that develops synthesized inertial data is proposed for determining optimal sensors placement. Comparison between virtual and real inertial data is achieved. Training motion recognition algorithm on synthesized and real inertial data exhibits less than 7% difference. This method highlights the ability of the numerical model to determine relevant sensor placement of IMUs on human body for motion recognition algorithm using virtual sensors.
引用
收藏
页码:536 / 543
页数:8
相关论文
共 50 条
  • [1] Synthetized inertial measurement units (IMUs) to evaluate the placement of wearable sensors on human body for motion recognition
    Hoareau, Damien
    Jodin, Gurvan
    Chantal, Pierre-Antoine
    Bretin, Sara
    Prioux, Jacques
    Razan, Florence
    Journal of Engineering, 2022, 2022 (05): : 536 - 543
  • [2] Slip Detection and Prediction in Human Walking Using Only Wearable Inertial Measurement Units (IMUs)
    Trkov, Mitja
    Chen, Kuo
    Yi, Jingang
    Liu, Tao
    2015 IEEE/ASME INTERNATIONAL CONFERENCE ON ADVANCED INTELLIGENT MECHATRONICS (AIM), 2015, : 854 - 859
  • [3] Hand Gesture Sequence Recognition using Inertial Motion Units (IMUs)
    Kavarthapu, Dilip Chakravarthy
    Mitra, Kaushik
    PROCEEDINGS 2017 4TH IAPR ASIAN CONFERENCE ON PATTERN RECOGNITION (ACPR), 2017, : 953 - 957
  • [4] Segmentation and recognition of human motion sequences using wearable inertial sensors
    Guo, Ming
    Wang, Zhelong
    MULTIMEDIA TOOLS AND APPLICATIONS, 2018, 77 (16) : 21201 - 21220
  • [5] Segmentation and recognition of human motion sequences using wearable inertial sensors
    Ming Guo
    Zhelong Wang
    Multimedia Tools and Applications, 2018, 77 : 21201 - 21220
  • [6] Thigh Motion-Based Gait Analysis for Human Identification using Inertial Measurement Units (IMUs)
    Asuncion, Lloyd Vincent R.
    De Mesa, Joan Xyrel P.
    Juan, Patrick Kyle H.
    Sayson, Nathaniel T.
    Dela Cruz, Angelo R.
    2018 IEEE 10TH INTERNATIONAL CONFERENCE ON HUMANOID, NANOTECHNOLOGY, INFORMATION TECHNOLOGY, COMMUNICATION AND CONTROL, ENVIRONMENT AND MANAGEMENT (HNICEM), 2018,
  • [7] Wearable Inertial Sensors for Human Motion Analysis: A Review
    Hussein Lopez-Nava, Irvin
    Munoz-Melendez, Angelica
    IEEE SENSORS JOURNAL, 2016, 16 (22) : 7821 - 7834
  • [8] Swimming Motion Analysis and Posture Recognition Based on Wearable Inertial Sensors
    Wang, Zhelong
    Shi, Xin
    Wang, Jiaxin
    Gao, Fengshan
    Li, Jie
    Guo, Ming
    Zhao, Hongyu
    Qiu, Sen
    2019 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS (SMC), 2019, : 3371 - 3376
  • [9] Automatic recognition of excavator working cycles using supervised learning and motion data obtained from inertial measurement units (IMUs)
    Amirmasoud Molaei
    Antti Kolu
    Kalle Lahtinen
    Marcus Geimer
    Construction Robotics, 2024, 8 (2)
  • [10] Lower-Body Walking Motion Estimation Using Only Two Shank-Mounted Inertial Measurement Units (IMUs)
    Li, Tong
    Wang, Lei
    Li, Qingguo
    Liu, Tao
    2020 IEEE/ASME INTERNATIONAL CONFERENCE ON ADVANCED INTELLIGENT MECHATRONICS (AIM), 2020, : 1143 - 1148