Fixed Point Results for Cyclic Contractions in Partial Symmetric Spaces

被引:0
作者
Rathee, Savita [1 ]
Gupta, Priyanka [2 ]
机构
[1] Maharshi Dayanand Univ, Dept Math, Rohtak 124001, Haryana, India
[2] Govt Coll Women, Dept Math, Panipat 132103, Haryana, India
来源
COMMUNICATIONS IN MATHEMATICS AND APPLICATIONS | 2021年 / 12卷 / 04期
关键词
Partial symmetric; Fixed point theorems; contractions;
D O I
10.26713/cma.v12i4.1631
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we prove fixed point results for various cyclic contractions in partial symmetric spaces. Our results generalize the fixed point results of Asim et al. (Fixed point results in partial symmetric spaces with an application, Axioms 8(13) (2019), 1 - 15) proved for the class of partial symmetric spaces for various contractions. Also, we provide an example in the support of proved result.
引用
收藏
页码:903 / 912
页数:10
相关论文
共 15 条
[1]   Symmetric Spaces and Fixed Points of Generalized Contractions [J].
Alshehri, Sarah ;
Arandelovic, Ivan ;
Shahzad, Naseer .
ABSTRACT AND APPLIED ANALYSIS, 2014,
[2]   Metric-like spaces, partial metric spaces and fixed points [J].
Amini-Harandi, A. .
FIXED POINT THEORY AND APPLICATIONS, 2012,
[3]   Fixed Point Results in Partial Symmetric Spaces with an Application [J].
Asim, Mohammad ;
Khan, A. Rauf ;
Imdad, Mohammad .
AXIOMS, 2019, 8 (01)
[4]  
Banach S., 1922, Fundamenta Mathematicae, V3, P133, DOI [10.4064/fm-3-1-133-181, DOI 10.4064/FM-3-1-133-181, https://doi.org/10.4064/fm-3-1-133-181]
[5]  
Czerwik S., 1993, ACTA MATH INFORM U O, V1, P5
[6]   Fixed point theory in symmetric spaces with applications to probabilistic spaces [J].
Hicks, TL ;
Rhoades, BE .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1999, 36 (03) :331-344
[7]   Common fixed point theorems in symmetric spaces employing a new implicit function and common property (E.A) [J].
Imdad, M. ;
Ali, Javid .
BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2009, 16 (03) :421-433
[8]  
Karapinar E, 2012, APPL MATH INFORM SCI, V6, P239
[9]   Fixed point theory for cyclic weak φ-contraction [J].
Karapinar, Erdal .
APPLIED MATHEMATICS LETTERS, 2011, 24 (06) :822-825
[10]  
Kirk WA., 2003, Fixed Point Theory, V4, P79