Measuring differential gene expression with RNA-seq: challenges and strategies for data analysis

被引:158
作者
Finotello, Francesca [1 ]
Di Camillo, Barbara [2 ]
机构
[1] Univ Padua, Dept Informat Engn, I-35131 Padua, Italy
[2] Univ Padua, Dept Informat Engn, Bioengn, I-35131 Padua, Italy
关键词
RNA-seq; differential gene expression; NGS; next-generation sequencing; transcriptomics; ALIGNMENT ALGORITHMS; STATISTICAL-METHODS; READ ALIGNMENT; LENGTH BIAS; QUANTIFICATION; NORMALIZATION; IDENTIFICATION; TOOLS; DNA; TRANSCRIPTOMES;
D O I
10.1093/bfgp/elu035
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
RNA-seq is a methodology for RNA profiling based on next-generation sequencing that enables to measure and compare gene expression patterns at unprecedented resolution. Although the appealing features of this technique have promoted its application to a wide panel of transcriptomics studies, the fast-evolving nature of experimental protocols and computational tools challenges the definition of a unified RNA-seq analysis pipeline. In this review, focused on the study of differential gene expression with RNA-seq, we go through themain steps of data processing and discuss open challenges and possible solutions.
引用
收藏
页码:130 / 142
页数:13
相关论文
共 84 条
[11]   De Novo Transcriptome Sequencing in Anopheles funestus Using Illumina RNA-Seq Technology [J].
Crawford, Jacob E. ;
Guelbeogo, Wamdaogo M. ;
Sanou, Antoine ;
Traore, Alphonse ;
Vernick, Kenneth D. ;
Sagnon, N'Fale ;
Lazzaro, Brian P. .
PLOS ONE, 2010, 5 (12)
[12]   The NBP Negative Binomial Model for Assessing Differential Gene Expression from RNA-Seq [J].
Di, Yanming ;
Schafer, Daniel W. ;
Cumbie, Jason S. ;
Chang, Jeff H. .
STATISTICAL APPLICATIONS IN GENETICS AND MOLECULAR BIOLOGY, 2011, 10 (01)
[13]   A comprehensive evaluation of normalization methods for Illumina high-throughput RNA sequencing data analysis [J].
Dillies, Marie-Agnes ;
Rau, Andrea ;
Aubert, Julie ;
Hennequet-Antier, Christelle ;
Jeanmougin, Marine ;
Servant, Nicolas ;
Keime, Celine ;
Marot, Guillemette ;
Castel, David ;
Estelle, Jordi ;
Guernec, Gregory ;
Jagla, Bernd ;
Jouneau, Luc ;
Laloe, Denis ;
Le Gall, Caroline ;
Schaeffer, Brigitte ;
Le Crom, Stephane ;
Guedj, Mickael ;
Jaffrezic, Florence .
BRIEFINGS IN BIOINFORMATICS, 2013, 14 (06) :671-683
[14]   Substantial biases in ultra-short read data sets from high-throughput DNA sequencing [J].
Dohm, Juliane C. ;
Lottaz, Claudio ;
Borodina, Tatiana ;
Himmelbauer, Heinz .
NUCLEIC ACIDS RESEARCH, 2008, 36 (16)
[15]  
Engström PG, 2013, NAT METHODS, V10, P1185, DOI [10.1038/NMETH.2722, 10.1038/nmeth.2722]
[16]   Opportunistic data structures with applications [J].
Ferragina, P ;
Manzini, G .
41ST ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 2000, :390-398
[17]   Reducing bias in RNA sequencing data: a novel approach to compute counts [J].
Finotello, Francesca ;
Lavezzo, Enrico ;
Bianco, Luca ;
Barzon, Luisa ;
Mazzon, Paolo ;
Fontana, Paolo ;
Toppo, Stefano ;
Di Camillo, Barbara .
BMC BIOINFORMATICS, 2014, 15 :1-12
[18]   Comparative analysis of algorithms for whole-genome assembly of pyrosequencing data [J].
Finotello, Francesca ;
Lavezzo, Enrico ;
Fontana, Paolo ;
Peruzzo, Denis ;
Albiero, Alessandro ;
Barzon, Luisa ;
Falda, Marco ;
Di Camillo, Barbara ;
Toppo, Stefano .
BRIEFINGS IN BIOINFORMATICS, 2012, 13 (03) :269-280
[19]  
Flicek P, 2009, NAT METHODS, V6, pS6, DOI [10.1038/NMETH.1376, 10.1038/nmeth.1376]
[20]   Length bias correction for RNA-seq data in gene set analyses [J].
Gao, Liyan ;
Fang, Zhide ;
Zhang, Kui ;
Zhi, Degui ;
Cui, Xiangqin .
BIOINFORMATICS, 2011, 27 (05) :662-669