Measuring differential gene expression with RNA-seq: challenges and strategies for data analysis

被引:158
作者
Finotello, Francesca [1 ]
Di Camillo, Barbara [2 ]
机构
[1] Univ Padua, Dept Informat Engn, I-35131 Padua, Italy
[2] Univ Padua, Dept Informat Engn, Bioengn, I-35131 Padua, Italy
关键词
RNA-seq; differential gene expression; NGS; next-generation sequencing; transcriptomics; ALIGNMENT ALGORITHMS; STATISTICAL-METHODS; READ ALIGNMENT; LENGTH BIAS; QUANTIFICATION; NORMALIZATION; IDENTIFICATION; TOOLS; DNA; TRANSCRIPTOMES;
D O I
10.1093/bfgp/elu035
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
RNA-seq is a methodology for RNA profiling based on next-generation sequencing that enables to measure and compare gene expression patterns at unprecedented resolution. Although the appealing features of this technique have promoted its application to a wide panel of transcriptomics studies, the fast-evolving nature of experimental protocols and computational tools challenges the definition of a unified RNA-seq analysis pipeline. In this review, focused on the study of differential gene expression with RNA-seq, we go through themain steps of data processing and discuss open challenges and possible solutions.
引用
收藏
页码:130 / 142
页数:13
相关论文
共 84 条
[1]   Analyzing and minimizing PCR amplification bias in Illumina sequencing libraries [J].
Aird, Daniel ;
Ross, Michael G. ;
Chen, Wei-Sheng ;
Danielsson, Maxwell ;
Fennell, Timothy ;
Russ, Carsten ;
Jaffe, David B. ;
Nusbaum, Chad ;
Gnirke, Andreas .
GENOME BIOLOGY, 2011, 12 (02)
[2]   Differential expression analysis for sequence count data [J].
Anders, Simon ;
Huber, Wolfgang .
GENOME BIOLOGY, 2010, 11 (10)
[3]   HTSeq-a Python']Python framework to work with high-throughput sequencing data [J].
Anders, Simon ;
Pyl, Paul Theodor ;
Huber, Wolfgang .
BIOINFORMATICS, 2015, 31 (02) :166-169
[4]   Detecting differential usage of exons from RNA-seq data [J].
Anders, Simon ;
Reyes, Alejandro ;
Huber, Wolfgang .
GENOME RESEARCH, 2012, 22 (10) :2008-2017
[5]   Accurate identification of A-to-I RNA editing in human by transcriptome sequencing [J].
Bahn, Jae Hoon ;
Lee, Jae-Hyung ;
Li, Gang ;
Greer, Christopher ;
Peng, Guangdun ;
Xiao, Xinshu .
GENOME RESEARCH, 2012, 22 (01) :142-150
[6]   Summarizing and correcting the GC content bias in high-throughput sequencing [J].
Benjamini, Yuval ;
Speed, Terence P. .
NUCLEIC ACIDS RESEARCH, 2012, 40 (10) :e72
[7]   Evaluation of statistical methods for normalization and differential expression in mRNA-Seq experiments [J].
Bullard, James H. ;
Purdom, Elizabeth ;
Hansen, Kasper D. ;
Dudoit, Sandrine .
BMC BIOINFORMATICS, 2010, 11
[8]  
Burrows M., 1994, A block-sorting lossless data compression algorithm
[9]   SeqEntropy: Genome-Wide Assessment of Repeats for Short Read Sequencing [J].
Chu, Hsueh-Ting ;
Hsiao, William W. L. ;
Tsao, Theresa T. H. ;
Hsu, D. Frank ;
Chen, Chaur-Chin ;
Lee, Sheng-An ;
Kao, Cheng-Yan .
PLOS ONE, 2013, 8 (03)
[10]   Stem cell transcriptome profiling via massive-scale mRNA sequencing [J].
Cloonan, Nicole ;
Forrest, Alistair R. R. ;
Kolle, Gabriel ;
Gardiner, Brooke B. A. ;
Faulkner, Geoffrey J. ;
Brown, Mellissa K. ;
Taylor, Darrin F. ;
Steptoe, Anita L. ;
Wani, Shivangi ;
Bethel, Graeme ;
Robertson, Alan J. ;
Perkins, Andrew C. ;
Bruce, Stephen J. ;
Lee, Clarence C. ;
Ranade, Swati S. ;
Peckham, Heather E. ;
Manning, Jonathan M. ;
McKernan, Kevin J. ;
Grimmond, Sean M. .
NATURE METHODS, 2008, 5 (07) :613-619