Quantization of classical mechanics: Shall we lie?

被引:11
|
作者
Nucci, M. C. [1 ,2 ]
机构
[1] Univ Perugia, Dipartimento Matemat & Informat, I-06100 Perugia, Italy
[2] Ist Nazl Fis Nucl, Sez Perugia, I-06100 Perugia, Italy
关键词
quantization; Ostrogradsky method; Schrodinger equation; Lie symmetry; Noether symmetry; SYMMETRIES;
D O I
10.1007/s11232-011-0081-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We propose a Lie-Noether-symmetry solution of two problems that arise with classical quantization: the quantization of higher-order (more than second) Euler-Lagrange ordinary differential equations of classical mechanics and the quantization of any second-order Euler-Lagrange ordinary differential equation that classically comes from a simple linear equation via nonlinear canonical transformations.
引用
收藏
页码:994 / 1001
页数:8
相关论文
共 50 条
  • [21] On quantization of quasi-Lie bialgebras
    Štefan Sakáloš
    Pavol Ševera
    Selecta Mathematica, 2015, 21 : 649 - 725
  • [22] QUANTIZATION OF LIE ALGEBRAS OF BLOCK TYPE
    程永胜
    苏育才
    Acta Mathematica Scientia, 2010, 30 (04) : 1134 - 1142
  • [23] Quantization in relativistic classical mechanics: the Stuckelberg equation, neutrino oscillation and large-scale structure of the Universe
    Rusov, V. D.
    Vlasenko, D. S.
    EMERQUM 11: EMERGENT QUANTUM MECHANICS 2011 (HEINZ VON FOERSTER CONGRESS), 2012, 361
  • [24] Lie groups and quantum mechanics
    Nucci, M. C.
    Leach, P. G. L.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 406 (01) : 219 - 228
  • [25] Form invariance for systems of generalized classical mechanics
    Yi, Z
    Mei, FX
    CHINESE PHYSICS, 2003, 12 (10): : 1058 - 1061
  • [26] Quantization of Two Classical Models by Means of the BRST Quantization Method
    Bracken, Paul
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2008, 47 (12) : 3321 - 3334
  • [27] Representations of affine Lie superalgebras and their quantization in type A
    Bezerra, Luan
    Calixto, Lucas
    Futorny, Vyacheslav
    Kashuba, Iryna
    JOURNAL OF ALGEBRA, 2022, 611 : 320 - 340
  • [28] QUANTIZATION OF HAMILTONIAN-TYPE LIE ALGEBRAS
    Song, Guang'Ai
    Su, Yucai
    Xin, Bin
    PACIFIC JOURNAL OF MATHEMATICS, 2009, 240 (02) : 371 - 381
  • [29] Quantization of Two Classical Models by Means of the BRST Quantization Method
    Paul Bracken
    International Journal of Theoretical Physics, 2008, 47
  • [30] Representations of solvable Lie groups and geometric quantization
    Zhao, Q
    Xiao, L
    CHINESE ANNALS OF MATHEMATICS SERIES B, 1999, 20 (03) : 351 - 362