Unitary units of the group algebra of modular groups

被引:2
|
作者
Balogh, Zsolt Adam [1 ]
机构
[1] United Arab Emirates Univ, Coll Sci, Dept Math Sci, Al Ain, U Arab Emirates
关键词
Group ring; group of units; unitary subgroup; SUBGROUPS;
D O I
10.1142/S021949882250027X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let FM be the group algebra of the modular group M over a finite field F of characteristic two. We calculate the order of the *-unitary subgroup of the group algebra FM and describe the structure of the *-unitary subgroup in the case when |M| = 16.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] UNITARY AND SYMMETRIC UNITS OF A COMMUTATIVE GROUP ALGEBRA
    Bovdi, V. A.
    Grishkov, A. N.
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2019, 62 (03) : 641 - 654
  • [2] Modular group algebras whose group of unitary units is locally nilpotent
    Bovdi, V
    ACTA SCIENTIARUM MATHEMATICARUM, 2022, 88 (3-4): : 571 - 576
  • [3] Hypercentral unit groups and the hyperbolicity of a modular group algebra
    Iwaki, E.
    Juriaans, S. O.
    COMMUNICATIONS IN ALGEBRA, 2008, 36 (04) : 1336 - 1345
  • [4] The isomorphism problem of unitary subgroups of modular group algebras
    Balogh, Zsolt
    Bovdi, Victor
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2020, 97 (1-2): : 27 - 39
  • [5] THE STRUCTURE OF THE UNITARY UNITS OF THE GROUP ALGEBRA F-2k D-8
    Gildea, Joe
    INTERNATIONAL ELECTRONIC JOURNAL OF ALGEBRA, 2011, 9 : 171 - 176
  • [6] Unitary Units Satisfying a Group Identity
    Broche, Osnel
    Dooms, Ann
    Ruiz, Manuel
    COMMUNICATIONS IN ALGEBRA, 2009, 37 (05) : 1729 - 1738
  • [7] Units of commutative group algebra with involution
    Bovdi, A.
    Szakacs, A.
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2006, 69 (03): : 291 - 296
  • [8] GROUPS NORMALIZED BY THE ODD UNITARY GROUP
    Voronetsky, E.
    ST PETERSBURG MATHEMATICAL JOURNAL, 2020, 31 (06) : 939 - 967
  • [9] On the derived length of units in group algebra
    Chaudhuri, Dishari
    Saikia, Anupam
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2017, 67 (03) : 855 - 865
  • [10] Group rings whose unitary units are nilpotent
    Lee, Gregory T.
    Sehgal, Sudarshan K.
    Spinelli, Ernesto
    JOURNAL OF ALGEBRA, 2014, 410 : 343 - 354