Interface Engineering for Controlling Device Properties of Organic Antiambipolar Transistors

被引:38
作者
Kobashi, Kazuyoshi [1 ,2 ]
Hayakawa, Ryoma [1 ]
Chikyow, Toyohiro [1 ]
Wakayama, Yutaka [1 ,2 ]
机构
[1] Natl Inst Mat Sci, Int Ctr Mat Nanoarchitecton WPI MANA, 1-1 Namiki, Tsukuba, Ibaraki 3050044, Japan
[2] Kyushu Univ, Dept Chem & Biochem, Fac Engn, 1-1 Namiki, Tsukuba, Ibaraki 3050044, Japan
关键词
antiambipolar transistor; pn heterojunction; negative differential resistance; carrier injection; high-k dielectric; organic field-effect transistor; FIELD-EFFECT TRANSISTORS; THIN-FILM TRANSISTORS; P-N HETEROJUNCTIONS; LAYER; PERFORMANCE; PENTACENE; MONOLAYER; CONTACT; HYBRID; DIODES;
D O I
10.1021/acsami.7b14652
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The main purpose of this study is to establish a guideline for controlling the device properties of organic antiambipolar transistors. Our key strategy is to use interface engineering to promote carrier injection at channel/electrode interfaces and carrier accumulation at a channel/dielectric interface. The effective use of carrier injection interlayers and an insulator layer with a high dielectric constant (high-k) enabled the fine tuning of device parameters and, in particular, the onset (V-on) and offset (V-off) voltages. A well-matched combination of the interlayers and a high-k dielectric layer achieved a low peak voltage (0.25 V) and a narrow on-state bias range (2.2 V), indicating that organic antiambipolar transistors have high potential as negative differential resistance devices for multivalued logic circuits.
引用
收藏
页码:2762 / 2767
页数:6
相关论文
共 33 条
[1]   Intrinsic Electronic Transport Properties of High-Quality Monolayer and Bilayer MoS2 [J].
Baugher, Britton W. H. ;
Churchill, Hugh O. H. ;
Yang, Yafang ;
Jarillo-Herrero, Pablo .
NANO LETTERS, 2013, 13 (09) :4212-4216
[2]   Resonant tunnelling and fast switching in amorphous-carbon quantum-well structures [J].
Bhattacharyya, S ;
Henley, SJ ;
Mendoza, E ;
Gomez-Rojas, L ;
Allam, J ;
Silva, SRP .
NATURE MATERIALS, 2006, 5 (01) :19-22
[3]   Low-temperature atomic-layer-deposition lift-off method for microelectronic and nanoelectronic applications [J].
Biercuk, MJ ;
Monsma, DJ ;
Marcus, CM ;
Becker, JS ;
Gordon, RG .
APPLIED PHYSICS LETTERS, 2003, 83 (12) :2405-2407
[4]   PSEUDOMORPHIC IN0.53GA0.47AS/ALAS/INAS RESONANT TUNNELING DIODES WITH PEAK-TO-VALLEY CURRENT RATIOS OF 30 AT ROOM-TEMPERATURE [J].
BROEKAERT, TPE ;
LEE, W ;
FONSTAD, CG .
APPLIED PHYSICS LETTERS, 1988, 53 (16) :1545-1547
[5]   Coaxial nanowire resonant tunneling diodes from non-polar AlN/GaN on silicon [J].
Carnevale, S. D. ;
Marginean, C. ;
Phillips, P. J. ;
Kent, T. F. ;
Sarwar, A. T. M. G. ;
Mills, M. J. ;
Myers, R. C. .
APPLIED PHYSICS LETTERS, 2012, 100 (14)
[6]   Mobility Improvement and Temperature Dependence in MoSe2 Field-Effect Transistors on Parylene-C Substrate [J].
Chamlagain, Bhim ;
Li, Qing ;
Ghimire, Nirmal Jeevi ;
Chuang, Hsun-Jen ;
Perera, Meeghage Madusanka ;
Tu, Honggen ;
Xu, Yong ;
Pan, Minghu ;
Xaio, Di ;
Yan, Jiaqiang ;
Mandrus, David ;
Zhou, Zhixian .
ACS NANO, 2014, 8 (05) :5079-5088
[7]   Improved performance in n-channel organic thin film transistors by nanoscale interface modification [J].
Chu, Chih-Wei ;
Sung, Chao-Feng ;
Lee, Yuh-Zheng ;
Cheng, Kevin .
ORGANIC ELECTRONICS, 2008, 9 (02) :262-266
[8]   High-performance organic thin-film transistors with metal oxide/metal bilayer electrode [J].
Chu, CW ;
Li, SH ;
Chen, CW ;
Shrotriya, V ;
Yang, Y .
APPLIED PHYSICS LETTERS, 2005, 87 (19) :1-3
[9]  
der Wagt van, 1999, P IEEE, V87, P571
[10]   Combining Axial and Radial Nanowire Heterostructures: Radial Esaki Diodes and Tunnel Field-Effect Transistors [J].
Dey, Anil W. ;
Svensson, Johannes ;
Ek, Martin ;
Lind, Erik ;
Thelander, Claes ;
Wernersson, Lars-Erik .
NANO LETTERS, 2013, 13 (12) :5919-5924