Cosine and sine series with generalized monotone coefficients in Lorentz spaces

被引:1
作者
Volosivets, S. S. [1 ]
机构
[1] Saratov NG Chernyshevskii State Univ, Dept Mech & Math, Astrakhanskaya 83, Saratov 410012, Russia
关键词
Lorentz space; cosine and sine series; general monotone sequence; TRIGONOMETRIC SERIES; FOURIER-SERIES; INTEGRABILITY;
D O I
10.1007/s10476-017-0508-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We obtain a necessary and sufficient condition for the sums f or g of cosine or sine series with general monotone coefficients to belong to the Lorentz space I >(q, I center dot) in terms of these coefficients {a (n) } (n=1) (a) . Similar results are also obtained for weighted L (q) spaces. As a corollary, the equivalence of norms of f or g in Lorentz space and corresponding weighted L (q) space with norms of {a (n) } (n=1) (a) in appropriate weighted l (q) space is established. The results of this paper generalize earlier results of Booton, Dyachenko, Simonov and Tikhonov.
引用
收藏
页码:641 / 655
页数:15
相关论文
共 16 条
[1]  
[Anonymous], 1982, TRANSL MATH MONOGRAP
[2]   INTEGRABILITY THEOREMS FOR FOURIER SERIES [J].
ASKEY, R ;
WAINGER, S .
DUKE MATHEMATICAL JOURNAL, 1966, 33 (01) :223-&
[3]  
Bari NK., 1956, Tr. Mosk. Mat. Obs, V5, P483
[4]   General monotone sequences and trigonometric series [J].
Booton, Barry .
MATHEMATISCHE NACHRICHTEN, 2014, 287 (5-6) :518-529
[5]   Integrability and continuity of functions represented by trigonometric series: coefficients criteria [J].
Dyachenko, Mikhail ;
Tikhonov, Sergey .
STUDIA MATHEMATICA, 2009, 193 (03) :285-306
[6]  
Hardy G.H., 1931, J. Lond. Math. Soc., V6, P3, DOI 10.1112/jlms/s1-6.1.3
[7]  
HARDY GH, 1964, INEQUALITIES
[8]  
LEINDLER L, 1970, ACTA SCI MATH, V31, P279
[9]  
Leindler L, 1976, ACTA SCI MATH SZEGED, V2, P117
[10]   SOME NEW FUNCTIONAL SPACES [J].
LORENTZ, GG .
ANNALS OF MATHEMATICS, 1950, 51 (01) :37-55