Heterogeneous diffusion with stochastic resetting

被引:43
|
作者
Sandev, Trifce [1 ,2 ,3 ]
Domazetoski, Viktor [1 ]
Kocarev, Ljupco [1 ,4 ]
Metzler, Ralf [2 ]
Chechkin, Aleksei [2 ,5 ,6 ]
机构
[1] Macedonian Acad Sci & Arts, Res Ctr Comp Sci & Informat Technol, Bul Krste Misirkov 2, Skopje 1000, North Macedonia
[2] Univ Potsdam, Inst Phys & Astron, D-14476 Potsdam, Germany
[3] Ss Cyril & Methodius Univ, Fac Nat Sci & Math, Inst Phys, Arhimedova 3, Skopje 1000, North Macedonia
[4] Ss Cyril & Methodius Univ, Fac Comp Sci & Engn, POB 393, Skopje 1000, North Macedonia
[5] Wroclaw Univ Sci & Technol, Fac Pure & Appl Math, Hugo Steinhaus Ctr, Wyspianskiego 27, PL-50370 Wroclaw, Poland
[6] Akhiezer Inst Theoret Phys, UA-61108 Kharkov, Ukraine
关键词
heterogeneous diffusion; Fokker-Planck equation; Langevin equation; stochastic resetting; nonequilibrium stationary state; large deviation function; ANOMALOUS DIFFUSION; NONADDITIVE FLUCTUATIONS; RANDOM-WALKS; MEDIA; ITO; STRATONOVICH; NONERGODICITY; DYNAMICS; EQUATION; MODELS;
D O I
10.1088/1751-8121/ac491c
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study a heterogeneous diffusion process (HDP) with position-dependent diffusion coefficient and Poissonian stochastic resetting. We find exact results for the mean squared displacement and the probability density function. The nonequilibrium steady state reached in the long time limit is studied. We also analyse the transition to the non-equilibrium steady state by finding the large deviation function. We found that similarly to the case of the normal diffusion process where the diffusion length grows like t (1/2) while the length scale xi(t) of the inner core region of the nonequilibrium steady state grows linearly with time t, in the HDP with diffusion length increasing like t ( p/2) the length scale xi(t) grows like t ( p ). The obtained results are verified by numerical solutions of the corresponding Langevin equation.
引用
收藏
页数:26
相关论文
共 50 条
  • [41] Telegraphic processes with stochastic resetting
    Masoliver, Jaume
    PHYSICAL REVIEW E, 2019, 99 (01)
  • [42] Autonomous ratcheting by stochastic resetting
    Ghosh, Pulak K.
    Nayak, Shubhadip
    Liu, Jianli
    Li, Yunyun
    Marchesoni, Fabio
    JOURNAL OF CHEMICAL PHYSICS, 2023, 159 (03):
  • [43] Stochastic resetting on comblike structures
    Domazetoski, Viktor
    Maso-Puigdellosas, Axel
    Sandev, Trifce
    Mendez, Vicenc
    Iomin, Alexander
    Kocarev, Ljupco
    PHYSICAL REVIEW RESEARCH, 2020, 2 (03):
  • [44] Mean first-passage time of heterogeneous telegrapher's process under stochastic resetting
    Jolakoski, P.
    Trajanovski, P.
    Iomin, A.
    Kocarev, L.
    Sandev, T.
    EPL, 2025, 149 (04)
  • [45] Stochastic dynamics with multiplicative dichotomic noise: Heterogeneous telegrapher's equation, anomalous crossovers and resetting
    Sandev, Trifce
    Kocarev, Ljupco
    Metzler, Ralf
    Chechkin, Aleksei
    CHAOS SOLITONS & FRACTALS, 2022, 165
  • [46] Diffusion with resetting in a logarithmic potential
    Ray, Somrita
    Reuveni, Shlomi
    JOURNAL OF CHEMICAL PHYSICS, 2020, 152 (23):
  • [47] Stochastic resetting with stochastic returns using external trap
    Gupta, Deepak
    Plata, Carlos A.
    Kundu, Anupam
    Pal, Arnab
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2021, 54 (02)
  • [48] Diffusion with local resetting and exclusion
    Miron, Asaf
    Reuveni, Shlomi
    PHYSICAL REVIEW RESEARCH, 2021, 3 (01):
  • [49] Diffusion with resetting inside a circle
    Chatterjee, Abhinava
    Christou, Christos
    Schadschneider, Andreas
    PHYSICAL REVIEW E, 2018, 97 (06)
  • [50] Time averaging and emerging nonergodicity upon resetting of fractional Brownian motion and heterogeneous diffusion processes
    Wang, Wei
    Cherstvy, Andrey G.
    Kantz, Holger
    Metzler, Ralf
    Sokolov, Igor M.
    PHYSICAL REVIEW E, 2021, 104 (02)