Heterogeneous diffusion with stochastic resetting

被引:43
作者
Sandev, Trifce [1 ,2 ,3 ]
Domazetoski, Viktor [1 ]
Kocarev, Ljupco [1 ,4 ]
Metzler, Ralf [2 ]
Chechkin, Aleksei [2 ,5 ,6 ]
机构
[1] Macedonian Acad Sci & Arts, Res Ctr Comp Sci & Informat Technol, Bul Krste Misirkov 2, Skopje 1000, North Macedonia
[2] Univ Potsdam, Inst Phys & Astron, D-14476 Potsdam, Germany
[3] Ss Cyril & Methodius Univ, Fac Nat Sci & Math, Inst Phys, Arhimedova 3, Skopje 1000, North Macedonia
[4] Ss Cyril & Methodius Univ, Fac Comp Sci & Engn, POB 393, Skopje 1000, North Macedonia
[5] Wroclaw Univ Sci & Technol, Fac Pure & Appl Math, Hugo Steinhaus Ctr, Wyspianskiego 27, PL-50370 Wroclaw, Poland
[6] Akhiezer Inst Theoret Phys, UA-61108 Kharkov, Ukraine
关键词
heterogeneous diffusion; Fokker-Planck equation; Langevin equation; stochastic resetting; nonequilibrium stationary state; large deviation function; ANOMALOUS DIFFUSION; NONADDITIVE FLUCTUATIONS; RANDOM-WALKS; MEDIA; ITO; STRATONOVICH; NONERGODICITY; DYNAMICS; EQUATION; MODELS;
D O I
10.1088/1751-8121/ac491c
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study a heterogeneous diffusion process (HDP) with position-dependent diffusion coefficient and Poissonian stochastic resetting. We find exact results for the mean squared displacement and the probability density function. The nonequilibrium steady state reached in the long time limit is studied. We also analyse the transition to the non-equilibrium steady state by finding the large deviation function. We found that similarly to the case of the normal diffusion process where the diffusion length grows like t (1/2) while the length scale xi(t) of the inner core region of the nonequilibrium steady state grows linearly with time t, in the HDP with diffusion length increasing like t ( p/2) the length scale xi(t) grows like t ( p ). The obtained results are verified by numerical solutions of the corresponding Langevin equation.
引用
收藏
页数:26
相关论文
共 50 条
  • [41] Stochastic resetting on comblike structures
    Domazetoski, Viktor
    Maso-Puigdellosas, Axel
    Sandev, Trifce
    Mendez, Vicenc
    Iomin, Alexander
    Kocarev, Ljupco
    PHYSICAL REVIEW RESEARCH, 2020, 2 (03):
  • [42] Gaussian process and Levy walk under stochastic noninstantaneous resetting and stochastic rest
    Zhou, Tian
    Xu, Pengbo
    Deng, Weihua
    PHYSICAL REVIEW E, 2021, 104 (05)
  • [43] Telegraphic processes with stochastic resetting
    Masoliver, Jaume
    PHYSICAL REVIEW E, 2019, 99 (01)
  • [44] Stochastic Resetting for Enhanced Sampling
    Blumer, Ofir
    Reuveni, Shlomi
    Hirshberg, Barak
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2022, 13 (48): : 11230 - 11236
  • [45] Search processes with stochastic resetting and partially absorbing targets
    Schumm, Ryan D.
    Bressloff, Paul C.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2021, 54 (40)
  • [46] Mean first-passage time of heterogeneous telegrapher's process under stochastic resetting
    Jolakoski, P.
    Trajanovski, P.
    Iomin, A.
    Kocarev, L.
    Sandev, T.
    EPL, 2025, 149 (04)
  • [47] Ornstein-Uhlenbeck Process on Three-Dimensional Comb under Stochastic Resetting
    Trajanovski, Pece
    Jolakoski, Petar
    Kocarev, Ljupco
    Sandev, Trifce
    MATHEMATICS, 2023, 11 (16)
  • [48] Dynamics of closed quantum systems under stochastic resetting
    Sevilla, Francisco J.
    Valdes-Hernandez, Andrea
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2023, 56 (03)
  • [49] Transition path theory for diffusive search with stochastic resetting
    Bressloff, Paul C.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2024, 57 (14)
  • [50] Stochastic resetting with stochastic returns using external trap
    Gupta, Deepak
    Plata, Carlos A.
    Kundu, Anupam
    Pal, Arnab
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2021, 54 (02)