Heterogeneous diffusion with stochastic resetting

被引:43
|
作者
Sandev, Trifce [1 ,2 ,3 ]
Domazetoski, Viktor [1 ]
Kocarev, Ljupco [1 ,4 ]
Metzler, Ralf [2 ]
Chechkin, Aleksei [2 ,5 ,6 ]
机构
[1] Macedonian Acad Sci & Arts, Res Ctr Comp Sci & Informat Technol, Bul Krste Misirkov 2, Skopje 1000, North Macedonia
[2] Univ Potsdam, Inst Phys & Astron, D-14476 Potsdam, Germany
[3] Ss Cyril & Methodius Univ, Fac Nat Sci & Math, Inst Phys, Arhimedova 3, Skopje 1000, North Macedonia
[4] Ss Cyril & Methodius Univ, Fac Comp Sci & Engn, POB 393, Skopje 1000, North Macedonia
[5] Wroclaw Univ Sci & Technol, Fac Pure & Appl Math, Hugo Steinhaus Ctr, Wyspianskiego 27, PL-50370 Wroclaw, Poland
[6] Akhiezer Inst Theoret Phys, UA-61108 Kharkov, Ukraine
关键词
heterogeneous diffusion; Fokker-Planck equation; Langevin equation; stochastic resetting; nonequilibrium stationary state; large deviation function; ANOMALOUS DIFFUSION; NONADDITIVE FLUCTUATIONS; RANDOM-WALKS; MEDIA; ITO; STRATONOVICH; NONERGODICITY; DYNAMICS; EQUATION; MODELS;
D O I
10.1088/1751-8121/ac491c
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study a heterogeneous diffusion process (HDP) with position-dependent diffusion coefficient and Poissonian stochastic resetting. We find exact results for the mean squared displacement and the probability density function. The nonequilibrium steady state reached in the long time limit is studied. We also analyse the transition to the non-equilibrium steady state by finding the large deviation function. We found that similarly to the case of the normal diffusion process where the diffusion length grows like t (1/2) while the length scale xi(t) of the inner core region of the nonequilibrium steady state grows linearly with time t, in the HDP with diffusion length increasing like t ( p/2) the length scale xi(t) grows like t ( p ). The obtained results are verified by numerical solutions of the corresponding Langevin equation.
引用
收藏
页数:26
相关论文
共 50 条
  • [31] General approach to stochastic resetting
    Singh, R. K.
    Gorska, K.
    Sandev, T.
    PHYSICAL REVIEW E, 2022, 105 (06)
  • [32] Stochastic resetting by a random amplitude
    Dahlenburg, Marcus
    Chechkin, Aleksei, V
    Schumer, Rina
    Metzler, Ralf
    PHYSICAL REVIEW E, 2021, 103 (05)
  • [33] Switching diffusions and stochastic resetting
    Bressloff, Paul C.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2020, 53 (27)
  • [34] Resetting in stochastic optimal control
    De Bruyne, Benjamin
    Mori, Francesco
    PHYSICAL REVIEW RESEARCH, 2023, 5 (01):
  • [35] Stochastic representation of processes with resetting
    Magdziarz, Marcin
    Tazbierski, Kacper
    PHYSICAL REVIEW E, 2022, 106 (01)
  • [36] Drift-diffusion on a Cayley tree with stochastic resetting: the localization-delocalization transition
    Bressloff, Paul C.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2021, 2021 (06):
  • [37] The inspection paradox in stochastic resetting
    Pal, Arnab
    Kostinski, Sarah
    Reuveni, Shlomi
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2022, 55 (02)
  • [38] Ising model with stochastic resetting
    Magoni, Matteo
    Majumdar, Satya N.
    Schehr, Gregory
    PHYSICAL REVIEW RESEARCH, 2020, 2 (03):
  • [39] Stochastic resetting in a nonequilibrium environment
    Goswami, Koushik
    PHYSICAL REVIEW E, 2025, 111 (01)
  • [40] Stochastic Resetting for Enhanced Sampling
    Blumer, Ofir
    Reuveni, Shlomi
    Hirshberg, Barak
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2022, 13 (48): : 11230 - 11236