Heterogeneous diffusion with stochastic resetting

被引:43
|
作者
Sandev, Trifce [1 ,2 ,3 ]
Domazetoski, Viktor [1 ]
Kocarev, Ljupco [1 ,4 ]
Metzler, Ralf [2 ]
Chechkin, Aleksei [2 ,5 ,6 ]
机构
[1] Macedonian Acad Sci & Arts, Res Ctr Comp Sci & Informat Technol, Bul Krste Misirkov 2, Skopje 1000, North Macedonia
[2] Univ Potsdam, Inst Phys & Astron, D-14476 Potsdam, Germany
[3] Ss Cyril & Methodius Univ, Fac Nat Sci & Math, Inst Phys, Arhimedova 3, Skopje 1000, North Macedonia
[4] Ss Cyril & Methodius Univ, Fac Comp Sci & Engn, POB 393, Skopje 1000, North Macedonia
[5] Wroclaw Univ Sci & Technol, Fac Pure & Appl Math, Hugo Steinhaus Ctr, Wyspianskiego 27, PL-50370 Wroclaw, Poland
[6] Akhiezer Inst Theoret Phys, UA-61108 Kharkov, Ukraine
关键词
heterogeneous diffusion; Fokker-Planck equation; Langevin equation; stochastic resetting; nonequilibrium stationary state; large deviation function; ANOMALOUS DIFFUSION; NONADDITIVE FLUCTUATIONS; RANDOM-WALKS; MEDIA; ITO; STRATONOVICH; NONERGODICITY; DYNAMICS; EQUATION; MODELS;
D O I
10.1088/1751-8121/ac491c
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study a heterogeneous diffusion process (HDP) with position-dependent diffusion coefficient and Poissonian stochastic resetting. We find exact results for the mean squared displacement and the probability density function. The nonequilibrium steady state reached in the long time limit is studied. We also analyse the transition to the non-equilibrium steady state by finding the large deviation function. We found that similarly to the case of the normal diffusion process where the diffusion length grows like t (1/2) while the length scale xi(t) of the inner core region of the nonequilibrium steady state grows linearly with time t, in the HDP with diffusion length increasing like t ( p/2) the length scale xi(t) grows like t ( p ). The obtained results are verified by numerical solutions of the corresponding Langevin equation.
引用
收藏
页数:26
相关论文
共 50 条
  • [21] Fractional heterogeneous telegraph processes: Interplay between heterogeneity, memory, and stochastic resetting
    Sandev, Trifce
    Iomin, Alexander
    PHYSICAL REVIEW E, 2024, 110 (02)
  • [22] Stochastic thermodynamics of resetting
    Fuchs, Jaco
    Goldt, Sebastian
    Seifert, Udo
    EPL, 2016, 113 (06)
  • [23] Stochastic resetting and applications
    Evans, Martin R.
    Majumdar, Satya N.
    Schehr, Gregory
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2020, 53 (19)
  • [24] Diffusion with stochastic resetting of interacting particles emerging from a model of population genetics
    da Silva, Telles Timoteo
    Fragoso, Marcelo Dutra
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2022, 55 (01)
  • [25] Fractional Prabhakar Derivative in Diffusion Equation with Non-Static Stochastic Resetting
    dos Santos, Maike A. F.
    PHYSICS, 2019, 1 (01): : 40 - 58
  • [26] Space-dependent diffusion with stochastic resetting: A first-passage study
    Ray, Somrita
    JOURNAL OF CHEMICAL PHYSICS, 2020, 153 (23): : 234904
  • [27] Conditioned backward and forward times of diffusion with stochastic resetting: A renewal theory approach
    Maso-Puigdellosas, Axel
    Campos, Daniel
    Mendez, Vicenc
    PHYSICAL REVIEW E, 2022, 106 (03)
  • [28] Time-dependent density of diffusion with stochastic resetting is invariant to return speed
    Pal, Arnab
    Kusmierz, Lukasz
    Reuveni, Shlomi
    PHYSICAL REVIEW E, 2019, 100 (04)
  • [29] Diffusion with optimal resetting
    Evans, Martin R.
    Majumdar, Satya N.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (43)
  • [30] Diffusion with partial resetting
    Tal-Friedman, Ofir
    Roichman, Yael
    Reuveni, Shlomi
    PHYSICAL REVIEW E, 2022, 106 (05)