Heterogeneous diffusion with stochastic resetting

被引:43
|
作者
Sandev, Trifce [1 ,2 ,3 ]
Domazetoski, Viktor [1 ]
Kocarev, Ljupco [1 ,4 ]
Metzler, Ralf [2 ]
Chechkin, Aleksei [2 ,5 ,6 ]
机构
[1] Macedonian Acad Sci & Arts, Res Ctr Comp Sci & Informat Technol, Bul Krste Misirkov 2, Skopje 1000, North Macedonia
[2] Univ Potsdam, Inst Phys & Astron, D-14476 Potsdam, Germany
[3] Ss Cyril & Methodius Univ, Fac Nat Sci & Math, Inst Phys, Arhimedova 3, Skopje 1000, North Macedonia
[4] Ss Cyril & Methodius Univ, Fac Comp Sci & Engn, POB 393, Skopje 1000, North Macedonia
[5] Wroclaw Univ Sci & Technol, Fac Pure & Appl Math, Hugo Steinhaus Ctr, Wyspianskiego 27, PL-50370 Wroclaw, Poland
[6] Akhiezer Inst Theoret Phys, UA-61108 Kharkov, Ukraine
关键词
heterogeneous diffusion; Fokker-Planck equation; Langevin equation; stochastic resetting; nonequilibrium stationary state; large deviation function; ANOMALOUS DIFFUSION; NONADDITIVE FLUCTUATIONS; RANDOM-WALKS; MEDIA; ITO; STRATONOVICH; NONERGODICITY; DYNAMICS; EQUATION; MODELS;
D O I
10.1088/1751-8121/ac491c
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study a heterogeneous diffusion process (HDP) with position-dependent diffusion coefficient and Poissonian stochastic resetting. We find exact results for the mean squared displacement and the probability density function. The nonequilibrium steady state reached in the long time limit is studied. We also analyse the transition to the non-equilibrium steady state by finding the large deviation function. We found that similarly to the case of the normal diffusion process where the diffusion length grows like t (1/2) while the length scale xi(t) of the inner core region of the nonequilibrium steady state grows linearly with time t, in the HDP with diffusion length increasing like t ( p/2) the length scale xi(t) grows like t ( p ). The obtained results are verified by numerical solutions of the corresponding Langevin equation.
引用
收藏
页数:26
相关论文
共 50 条
  • [1] Transient anomalous diffusion in heterogeneous media with stochastic resetting
    Lenzi, M. K.
    Lenzi, E. K.
    Guilherme, L. M. S.
    Evangelista, L. R.
    Ribeiro, H. V.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2022, 588
  • [2] Diffusion with Stochastic Resetting
    Evans, Martin R.
    Majumdar, Satya N.
    PHYSICAL REVIEW LETTERS, 2011, 106 (16)
  • [3] Local time of diffusion with stochastic resetting
    Pal, Arnab
    Chatterjee, Rakesh
    Reuveni, Shlomi
    Kundu, Anupam
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2019, 52 (26)
  • [4] Diffusion in a potential landscape with stochastic resetting
    Pal, Arnab
    PHYSICAL REVIEW E, 2015, 91 (01):
  • [5] Experimental Realization of Diffusion with Stochastic Resetting
    Tal-Friedman, Ofir
    Pal, Arnab
    Sekhon, Amandeep
    Reuveni, Shlomi
    Roichman, Yael
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2020, 11 (17): : 7350 - 7355
  • [6] Dichotomous flow with thermal diffusion and stochastic resetting
    Capala, Karol
    Dybiec, Bartlomiej
    Gudowska-Nowak, Ewa
    CHAOS, 2021, 31 (06)
  • [7] Results for Nonlinear Diffusion Equations with Stochastic Resetting
    Lenzi, Ervin K.
    Zola, Rafael S.
    Rosseto, Michely P.
    Mendes, Renio S.
    Ribeiro, Haroldo V.
    da Silva, Luciano R.
    Evangelista, Luiz R.
    ENTROPY, 2023, 25 (12)
  • [8] Autocorrelation functions and ergodicity in diffusion with stochastic resetting
    Stojkoski, Viktor
    Sandev, Trifce
    Kocarev, Ljupco
    Pal, Arnab
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2022, 55 (10)
  • [9] Shear-driven diffusion with stochastic resetting
    Abdoli, Iman
    Olsen, Kristian Stolevik
    Loewen, Hartmut
    PHYSICS OF FLUIDS, 2024, 36 (11)
  • [10] Diffusion with stochastic resetting screened by a semipermeable interface
    Bressloff, Paul C.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2023, 56 (10)