Average growth and extinction in a competitive Lotka-Volterra system

被引:28
作者
Ahmad, S [1 ]
Lazer, AC
机构
[1] Univ Texas, Dept Math Sci, San Antonio, TX 78249 USA
[2] Johannes Gutenberg Univ Mainz, Dept Math, Coral Gables, FL 33124 USA
关键词
extinction; average growth; (I; J); condition; strongly persistent; growth rate; interaction coefficient;
D O I
10.1016/j.na.2005.03.069
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we answer an earlier conjecture. Consider a class of nonautonomous competitive Lotka-Volterra systems. We show that certain inequalities involving the interaction coefficients and averages of the growth rates imply that the system is persistent. However, reversing one of these inequalities implies that the Nth species goes to extinction. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:545 / 557
页数:13
相关论文
共 12 条
[1]   Necessary and sufficient average growth in a Lotka-Volterra system [J].
Ahmad, S ;
Lazer, AC .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1998, 34 (02) :191-228
[2]   Average conditions for global asymptotic stability in a nonautonomous Lotka-Volterra system [J].
Ahmad, S ;
Lazer, AC .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2000, 40 (1-8) :37-49
[3]  
AHMAD S, IN PRESS ANN MAT PUR
[4]  
AHMAD S, 2002, CTR INT MATEMATICA, V20, P1
[5]  
Ahmad S., 1995, Appl. Anal., V57, P309
[6]  
GOPALSAMY K, 1992, J AUST MATH SOC B, P160
[7]   Lotka-Volterra systems with constant interaction coefficients [J].
Redheffer, R .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2001, 46 (08) :1151-1164
[8]  
Takeuchi Y., 1996, GLOBAL DYNAMICAL PRO
[9]  
Tineo A, 2005, ADV NONLINEAR STUD, V5, P57
[10]   AN ITERATIVE SCHEME FOR THE N-COMPETING SPECIES PROBLEM [J].
TINEO, A .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1995, 116 (01) :1-15