Sliding mode-based H-infinity filter for SOC estimation of lithium-ion batteries

被引:30
作者
Yao, Jianxin [1 ]
Ding, Jie [1 ]
Cheng, Yanyun [1 ]
Feng, Liang [1 ]
机构
[1] Nanjing Univ Posts & Telecommun, Sch Automat & Artificial Intelligence, Nanjing 210023, Peoples R China
关键词
Lithium-ion batteries; H-infinity filter; State of charge; Sliding mode observer; STATE-OF-CHARGE; TOTAL LEAST-SQUARES; CO-ESTIMATION; ALGORITHM; CAPACITY; OBSERVER; SYSTEM;
D O I
10.1007/s11581-021-04234-3
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
H-infinity filter (HIf) is widely used in state of charge (SOC) estimation of lithium-ion batteries due to its superior performance to extended Kalman filter (EKF) whose robustness is weak. In this paper, an improved HIf-based SOC estimation algorithm is proposed, which incorporates a sliding mode observer, yielding better estimation stability and accuracy than conventional HIf. The proposed algorithm takes advantages of HIf and sliding mode observer that it is more robust to the modeling error and noises. Samsung ICR18650 lithium-ion battery cell is tested and results show that the proposed method improves SOC estimation accuracy, two error indicators are evaluated and both are reduced compared to that of the EKF and HIf.
引用
收藏
页码:5147 / 5157
页数:11
相关论文
共 48 条
[1]  
Ali PMN, 2017, DESIDOC J LIB INF TE, V37, P73, DOI 10.14429/djlit.37.2.10508
[2]   Critical review of state of health estimation methods of Li-ion batteries for real applications [J].
Berecibar, M. ;
Gandiaga, I. ;
Villarreal, I. ;
Omar, N. ;
Van Mierlo, J. ;
Van den Bossche, P. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2016, 56 :572-587
[3]   Long Short-Term Memory Networks for Accurate State-of-Charge Estimation of Li-ion Batteries [J].
Chemali, Ephrem ;
Kollmeyer, Phillip J. ;
Preindl, Matthias ;
Ahmed, Ryan ;
Emadi, Ali .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2018, 65 (08) :6730-6739
[4]   Simply designed and universal sliding mode observer for the SOC estimation of lithium-ion batteries [J].
Chen, Qiaoyan ;
Jiang, Jiuchun ;
Ruan, Haijun ;
Zhang, Caiping .
IET POWER ELECTRONICS, 2017, 10 (06) :697-705
[5]   A novel approach to reconstruct open circuit voltage for state of charge estimation of lithium ion batteries in electric vehicles [J].
Chen, Xiaokai ;
Lei, Hao ;
Xiong, Rui ;
Shen, Weixiang ;
Yang, Ruixin .
APPLIED ENERGY, 2019, 255
[6]   A novel approach for state of charge estimation based on adaptive switching gain sliding mode observer in electric vehicles [J].
Chen, Xiaopeng ;
Shen, Weixiang ;
Cao, Zhenwei ;
Kapoor, Ajay .
JOURNAL OF POWER SOURCES, 2014, 246 :667-678
[7]   State of Charge Estimation of Lithium-Ion Batteries in Electric Drive Vehicles Using Extended Kalman Filtering [J].
Chen, Zheng ;
Fu, Yuhong ;
Mi, Chunting Chris .
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2013, 62 (03) :1020-1030
[8]   Experimental validation for Li-ion battery modeling using Extended Kalman Filters [J].
Claude, F. ;
Becherif, M. ;
Ramadan, H. S. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2017, 42 (40) :25509-25517
[9]   Online cell SOC estimation of Li-ion battery packs using a dual time-scale Kalman filtering for EV applications [J].
Dai, Haifeng ;
Wei, Xuezhe ;
Sun, Zechang ;
Wang, Jiayuan ;
Gu, Weijun .
APPLIED ENERGY, 2012, 95 :227-237
[10]   Critical review of on-board capacity estimation techniques for lithium-ion batteries in electric and hybrid electric vehicles [J].
Farmann, Alexander ;
Waag, Wladislaw ;
Marongiu, Andrea ;
Sauer, Dirk Uwe .
JOURNAL OF POWER SOURCES, 2015, 281 :114-130