On the time-dependent Cattaneo law in space dimension one

被引:18
作者
Conti, Monica [1 ]
Pata, Vittorino [1 ]
机构
[1] Politecn Milan, Dipartimento Matemat, I-20133 Milan, Italy
关键词
Cattaneo law; Nonautonomous dynamical systems; Wave equation; Time-dependent attractors; REACTION-DIFFUSION EQUATIONS; WAVE-EQUATION; GLOBAL ATTRACTOR;
D O I
10.1016/j.amc.2015.02.039
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the one-dimensional wave equation epsilon u(tt) - u(xx) + [1 + ef' (u)]u(t) + f(u) = h where epsilon = epsilon(t) is a decreasing function vanishing at infinity, providing a model for heat conduction of Cattaneo type with thermal resistance decreasing in time. Within the theory of processes on time-dependent spaces, we prove the existence of an invariant time-dependent attractor, which converges in a suitable sense to the attractor of the classical Fourier equation u(t) - u(xx) + f(u) = h formally arising in the limit t -> infinity. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:32 / 44
页数:13
相关论文
共 23 条
  • [1] Babin A.V., 1992, Attractors of Evolution Equations
  • [2] Cattaneo C., 1948, Atti. Sem. Mat. Fis. Univ. Modena, V3, P83
  • [3] Weakly dissipative semilinear equations of viscoelasticity
    Conti, M
    Pata, V
    [J]. COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2005, 4 (04) : 705 - 720
  • [4] Asymptotic structure of the attractor for processes on time-dependent spaces
    Conti, Monica
    Pata, Vittorino
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2014, 19 : 1 - 10
  • [5] Attractors for processes on time-dependent spaces. Applications to wave equations
    Conti, Monica
    Pata, Vittorino
    Temam, Roger
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 255 (06) : 1254 - 1277
  • [6] TWO-DIMENSIONAL REACTION-DIFFUSION EQUATIONS WITH MEMORY
    Conti, Monica
    Gatti, Stefania
    Grasselli, Maurizio
    Pata, Vittorino
    [J]. QUARTERLY OF APPLIED MATHEMATICS, 2010, 68 (04) : 607 - 643
  • [7] Di Plinio F., 2012, BOLL UNIONE MAT ITAL, V5, P19
  • [8] TIME-DEPENDENT ATTRACTOR FOR THE OSCILLON EQUATION
    Di Plinio, Francesco
    Duane, Gregory S.
    Temam, Roger
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2011, 29 (01) : 141 - 167
  • [9] Wavefronts in time-delayed reaction-diffusion systems.: Theory and comparison to experiment
    Fort, J
    Méndez, V
    [J]. REPORTS ON PROGRESS IN PHYSICS, 2002, 65 (06) : 895 - 954
  • [10] A one-dimensional wave equation with nonlinear damping
    Gatti, Stefania
    [J]. GLASGOW MATHEMATICAL JOURNAL, 2006, 48 : 419 - 430