Fq-linear codes over Fq-algebras

被引:3
作者
Mahmoudi, Saadoun [1 ]
Mirmohammadirad, Fahime [2 ]
Samei, Karim [1 ]
机构
[1] Bu Ali Sina Univ, Dept Math, Hamadan, Hamadan, Iran
[2] Malayer Univ, Dept Math, Malayer, Iran
关键词
F-q-algebra; Additive code; MacWilliams identity; CYCLIC CODES; MODULES; MDS;
D O I
10.1016/j.ffa.2020.101665
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Huffman (2013) [12] studied F-q-linear codes over F(q)m and he proved the MacWilliams identity for these codes with respect to ordinary and Hermitian trace inner products. Let S be a finite commutative F-q-algebra. An F-q-linear code over S of length n is an F-q-submodule of S-n. In this paper, we study F-q-linear codes over S. We obtain some bounds on minimum distance of these codes, and some large classes of MDR codes are introduced. We generalize the ordinary and Hermitian trace products over F-q-algebras and we prove the MacWilliams identity with respect to the generalized form. In particular, we obtain Huffman's results on the MacWilliams identity. Among other results, we give a theory to construct a class of quantum codes and the structure of F-q-linear codes over finite commutative graded F-q-algebras. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页数:20
相关论文
共 19 条
  • [1] Bierbrauer J, 2000, J COMB DES, V8, P174, DOI 10.1002/(SICI)1520-6610(2000)8:3<174::AID-JCD3>3.0.CO
  • [2] 2-T
  • [3] The theory of cyclic codes and a generalization to additive codes
    Bierbrauer, J
    [J]. DESIGNS CODES AND CRYPTOGRAPHY, 2002, 25 (02) : 189 - 206
  • [4] Bierbrauer J, 2007, LECT NOTES COMPUT SC, V4547, P276
  • [5] Cyclic additive codes
    Bierbrauer, Juergen
    [J]. JOURNAL OF ALGEBRA, 2012, 372 : 661 - 672
  • [6] Bruns W, 1993, COHEN MACAULAY RINGS
  • [7] Quantum error correction via codes over GF (4)
    Calderbank, AR
    Rains, EM
    Shor, PW
    Sloane, NJA
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 1998, 44 (04) : 1369 - 1387
  • [8] Dey BK, 2005, DESIGN CODE CRYPTOGR, V34, P89, DOI 10.1007/s10623-003-4196-x
  • [9] MDS codes over finite principal ideal rings
    Dougherty, Steven T.
    Kim, Jon-Lark
    Kulosman, Hamid
    [J]. DESIGNS CODES AND CRYPTOGRAPHY, 2009, 50 (01) : 77 - 92
  • [10] MDS and self-dual codes over rings
    Guenda, Kenza
    Gulliver, T. Aaron
    [J]. FINITE FIELDS AND THEIR APPLICATIONS, 2012, 18 (06) : 1061 - 1075