Segmentation of the brain using direction-averaged signal of DWI images

被引:13
作者
Cheng, Hu [1 ,2 ]
Newman, Sharlene [1 ,2 ]
Afzali, Maryam [4 ]
Fadnavis, Shreyas Sanjeev [3 ]
Garyfallidis, Eleftherios [2 ,3 ]
机构
[1] Indiana Univ, Dept Psychol & Brain Sci, Bloomington, IN 47405 USA
[2] Indiana Univ, Program Neurosci, Bloomington, IN 47405 USA
[3] Indiana Univ, Dept Intelligent Syst Engn, Bloomington, IN 47405 USA
[4] Cardiff Univ, Brain Res Imaging Ctr, Cardiff CF24 4HQ, Wales
基金
英国惠康基金;
关键词
Segmentation; Diffusion MRI; Gray matter; White matter; CSF; Direction-averaged; DIFFUSION; MODELS;
D O I
10.1016/j.mri.2020.02.010
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Segmentation of brain tissue in diffusion MRI image space has some unique advantages. A novel segmentation method using the direction-averaged diffusion weighted imaging (DWI) signal is proposed. Two images can be obtained from the fitting of the direction-averaged DWI signal as a function of b-value: one with superior contrast between the gray matter and white matter; one with prominent CSF contrast. A pseudo T1 weighted image can be constructed and standard segmentation tools can be applied. The method was tested on the HCP dataset using SPM12, and showed good agreement with segmentation using the T1 weighted image with the same resolution. The Dice score was all greater than 0.88 for GM or WM with full DWI data and very stable against subsampling of the DWI data in number of diffusion directions, number of shells, and spatial resolution.
引用
收藏
页码:1 / 7
页数:7
相关论文
共 21 条
[1]   How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging [J].
Andersson, JLR ;
Skare, S ;
Ashburner, J .
NEUROIMAGE, 2003, 20 (02) :870-888
[2]   Better Diffusion Segmentation in Acute Ischemic Stroke Through Automatic Tree Learning Anomaly Segmentation [J].
Boldsen, Jens K. ;
Engedal, Thorbjorn S. ;
Pedraza, Salvador ;
Cho, Tae-Hee ;
Thomalla, Goetz ;
Nighoghossian, Norbert ;
Baron, Jean-Claude ;
Fiehlers, Jens ;
Ostergaard, Leif ;
Mouridseni, Kim .
FRONTIERS IN NEUROINFORMATICS, 2018, 12
[3]   Automated pixel-wise brain tissue segmentation of diffusion-weighted images via machine learning [J].
Ciritsis, Alexander ;
Boss, Andreas ;
Rossi, Cristina .
NMR IN BIOMEDICINE, 2018, 31 (07)
[4]  
Cook PA, 2006, CAMINO OPEN SOURCE D, P2759
[5]   Method for bias field correction of brain T1-weighted magnetic resonance images minimizing segmentation error [J].
Gispert, JD ;
Reig, S ;
Pascau, J ;
Vaquero, JJ ;
García-Barreno, P ;
Desco, M .
HUMAN BRAIN MAPPING, 2004, 22 (02) :133-144
[6]   Multi-tissue constrained spherical deconvolution for improved analysis of multi-shell diffusion MRI data [J].
Jeurissen, Ben ;
Tournier, Jacques-Donald ;
Dhollander, Thijs ;
Connelly, Alan ;
Sijbers, Jan .
NEUROIMAGE, 2014, 103 :411-426
[7]   Quantitative Mapping of the Per-Axon Diffusion Coefficients in Brain White Matter [J].
Kaden, Enrico ;
Kruggel, Frithjof ;
Alexander, Daniel C. .
MAGNETIC RESONANCE IN MEDICINE, 2016, 75 (04) :1752-1763
[8]  
Kazemi K, 2014, J Biomed Phys Eng, V4, P13
[9]   Evaluation of Automated Brain MR Image Segmentation and Volumetry Methods [J].
Klauschen, Frederick ;
Goldman, Aaron ;
Barra, Vincent ;
Meyer-Lindenberg, Andreas ;
Lundervold, Arvid .
HUMAN BRAIN MAPPING, 2009, 30 (04) :1310-1327
[10]   Searching for the neurite density with diffusion MRI: Challenges for biophysical modeling [J].
Lampinen, Bjorn ;
Szczepankiewicz, Filip ;
Noven, Mikael ;
van Westen, Danielle ;
Hansson, Oskar ;
Englund, Elisabet ;
Martensson, Johan ;
Westin, Carl-Fredrik ;
Nilsson, Markus .
HUMAN BRAIN MAPPING, 2019, 40 (08) :2529-2545