Clinical and MRI models predicting amyloid deposition in progressive aphasia and apraxia of speech

被引:8
作者
Whitwell, Jennifer L. [1 ]
Weigand, Stephen D. [2 ]
Duffy, Joseph R. [3 ]
Strand, Edythe A. [3 ]
Machulda, Mary M. [4 ]
Senjem, Matthew L. [5 ]
Gunter, Jeffrey L. [5 ]
Lowe, Val J. [1 ]
Jack, Clifford R., Jr. [1 ]
Josephs, Keith A. [3 ]
机构
[1] Mayo Clin, Dept Radiol, 200 1st St SW, Rochester, MN 55905 USA
[2] Mayo Clin, Dept Hlth Sci Res Biostat, Rochester, MN USA
[3] Mayo Clin, Dept Neurol, Rochester, MN USA
[4] Mayo Clin, Dept Psychiat & Psychol Neuropsychol, Rochester, MN USA
[5] Mayo Clin, Dept Informat Technol, Rochester, MN USA
关键词
Beta-amyloid; Primary progressive aphasia; Apraxia of speech; Volumetric MRI; 3; VARIANTS; DEMENTIA; ALZHEIMERS; PATHOLOGY; PATTERNS; MUTATIONS; TAU; CLASSIFICATION; PROGRANULIN; CRITERIA;
D O I
10.1016/j.nicl.2016.01.014
中图分类号
R445 [影像诊断学];
学科分类号
100207 ;
摘要
Beta-amyloid (A beta) deposition can be observed in primary progressive aphasia (PPA) and progressive apraxia of speech (PAOS). While it is typically associated with logopenic PPA, there are exceptions that make predicting A beta status challenging based on clinical diagnosis alone. We aimed to determine whether MRI regional volumes or clinical data could help predict A beta deposition. One hundred and thirty-nine PPA (n = 97; 15 agrammatic, 53 logopenic, 13 semantic and 16 unclassified) and PAOS (n = 42) subjects were prospectively recruited into a cross-sectional study and underwent speech/language assessments, 3.0 T MRI and C11-Pittsburgh Compound B PET. The presence of A beta was determined using a 1.5 SUVR cut-point. Atlas-based parcellation was used to calculate gray matter volumes of 42 regions-of-interest across the brain. Penalized binary logistic regression was utilized to determine what combination of MRI regions, and what combination of speech and language tests, best predicts A beta (+) status. The optimal MRI model and optimal clinical model both performed comparably in their ability to accurately classify subjects according to A beta status. MRI accurately classified 81% of subjects using 14 regions. Small left superior temporal and inferior parietal volumes and large left Broca's area volumes were particularly predictive of A beta (+) status. Clinical scores accurately classified 83% of subjects using 12 tests. Phonological errors and repetition deficits, and absence of agrammatism and motor speech deficits were particularly predictive of A beta (+) status. In comparison, clinical diagnosis was able to accurately classify 89% of subjects. However, the MRI model performed well in predicting A beta deposition in unclassified PPA. Clinical diagnosis provides optimum prediction of A beta status at the group level, although regional MRI measurements and speech and language testing also performed well and could have advantages in predicting A beta status in unclassified PPA subjects. (C) 2016 The Authors. Published by Elsevier Inc.
引用
收藏
页码:90 / 98
页数:9
相关论文
共 52 条
[1]   Mutations in progranulin cause tau-negative frontotemporal dementia linked to chromosome 17 [J].
Baker, Matt ;
Mackenzie, Ian R. ;
Pickering-Brown, Stuart M. ;
Gass, Jennifer ;
Rademakers, Rosa ;
Lindholm, Caroline ;
Snowden, Julie ;
Adamson, Jennifer ;
Sadovnick, A. Dessa ;
Rollinson, Sara ;
Cannon, Ashley ;
Dwosh, Emily ;
Neary, David ;
Melquist, Stacey ;
Richardson, Anna ;
Dickson, Dennis ;
Berger, Zdenek ;
Eriksen, Jason ;
Robinson, Todd ;
Zehr, Cynthia ;
Dickey, Chad A. ;
Crook, Richard ;
McGowan, Eileen ;
Mann, David ;
Boeve, Bradley ;
Feldman, Howard ;
Hutton, Mike .
NATURE, 2006, 442 (7105) :916-919
[2]   Classification and clinicoradiologic features of primary progressive aphasia (PPA) and apraxia of speech [J].
Botha, Hugo ;
Duffy, Joseph R. ;
Whitwell, Jennifer L. ;
Strand, Edythe A. ;
Machulda, Mary M. ;
Schwarz, Christopher G. ;
Reid, Robert I. ;
Spychalla, Anthony J. ;
Senjem, Matthew L. ;
Jones, David T. ;
Lowe, Val ;
Jack, Clifford R. ;
Josephs, Keith A. .
CORTEX, 2015, 69 :220-236
[3]  
Chan D, 2001, ANN NEUROL, V49, P433, DOI 10.1002/ana.92
[4]   New criteria for frontotemporal dementia syndromes: clinical and pathological diagnostic implications [J].
Chare, Leone ;
Hodges, John R. ;
Leyton, Cristian E. ;
McGinley, Ciara ;
Tan, Rachel H. ;
Kril, Jillian J. ;
Halliday, Glenda M. .
JOURNAL OF NEUROLOGY NEUROSURGERY AND PSYCHIATRY, 2014, 85 (08) :866-871
[5]  
Dejesus-Hernandez M., 2011, EXPANDED GGGGCC HEXA
[6]   TOKEN TEST - A SENSITIVE TEST TO DETECT RECEPTIVE DISTURBANCES IN APHASICS [J].
DERENZI, E ;
VIGNOLO, LA .
BRAIN, 1962, 85 (04) :665-678
[7]   Dominant Frontotemporal Dementia Mutations in 140 Cases of Primary Progressive Aphasia and Speech Apraxia [J].
Flanagan, Eoin P. ;
Baker, Matthew C. ;
Perkerson, Ralph B. ;
Duffy, Joseph R. ;
Strand, Edythe A. ;
Whitwell, Jennifer L. ;
Machulda, Mary M. ;
Rademakers, Rosa ;
Josephs, Keith A. .
DEMENTIA AND GERIATRIC COGNITIVE DISORDERS, 2015, 39 (5-6) :281-286
[8]   Classification of primary progressive aphasia and its variants [J].
Gorno-Tempini, M. L. ;
Hillis, A. E. ;
Weintraub, S. ;
Kertesz, A. ;
Mendez, M. ;
Cappa, S. F. ;
Ogar, J. M. ;
Rohrer, J. D. ;
Black, S. ;
Boeve, B. F. ;
Manes, F. ;
Dronkers, N. F. ;
Vandenberghe, R. ;
Rascovsky, K. ;
Patterson, K. ;
Miller, B. L. ;
Knopman, D. S. ;
Hodges, J. R. ;
Mesulam, M. M. ;
Grossman, M. .
NEUROLOGY, 2011, 76 (11) :1006-1014
[9]   Cognition and anatomy in three variants of primary progressive aphasia [J].
Gorno-Tempini, ML ;
Dronkers, NF ;
Rankin, KP ;
Ogar, JM ;
Phengrasamy, L ;
Rosen, HJ ;
Johnson, JK ;
Weiner, MW ;
Miller, BL .
ANNALS OF NEUROLOGY, 2004, 55 (03) :335-346
[10]  
Harrell FE, 2001, Regression Modeling Strategies: With Applications to Linear Models, Logistic Regression, and Survival Analysis