Evaluation of a 3D-Printed Transoral Robotic Surgery Simulator Utilizing Artificial Tissue

被引:2
|
作者
Murr, Alexander T. [1 ]
Lumley, Catherine J. [1 ]
Feins, Richard H. [2 ]
Hackman, Trevor G. [1 ]
机构
[1] Univ N Carolina, Dept Otolaryngol Head & Neck Surg, Chapel Hill, NC 27515 USA
[2] Univ N Carolina, Dept Surg, Chapel Hill, NC 27515 USA
来源
LARYNGOSCOPE | 2022年 / 132卷 / 08期
基金
美国国家卫生研究院;
关键词
Transoral robotic surgery; surgical simulation; 3D printing; artificial tissue; TRAINING CURRICULUM; LEARNING-CURVE; SKILLS; VALIDATION; TOOL;
D O I
10.1002/lary.29981
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
Objectives/Hypothesis Transoral robotic surgery (TORS) poses challenges for operators in training, with limited robot access on a platform requiring distinct surgical skills. Few simulators exist, and current virtual reality training modules exclude head and neck simulations. This study evaluates the construct validity for a novel low-cost TORS simulator. Study Design Single institution prospective observational study. Methods Using 3D-printed oral cavity structures and replaceable artificial tissue components, a modular TORS simulator was constructed for short-duration hands-on simulations with the da Vinci SI robot. Sixteen surgeons of differing robotic skill levels, no experience (novice), prior experience, and formal robot training, participated in simulated tonsil and tongue base tumor resections. Video recordings of each participant were graded by a blinded robotically trained surgeon using a 35-point Global Evaluative Assessment of Robotic Surgery (GEARS) criterion adapted for the TORS simulator. Results Operators reporting formal robotic training or prior robot experience achieved significantly higher mean total GEARS scores compared to novice operators (32 vs. 20.5; P < .001). Overall, mean total GEARS scores correlated with reported experience level; novice operators scored 54% of total points at 19 (4.5), operators with prior experience scored 82.3% of total points at 28.8 (2.6), and robotically trained operators scored 97.1% of total points at 34 (1.7). Conclusion With a GEARS criterion, our simulator successfully differentiated novice from experienced and robotically trained operators of the da Vinci SI robot during simulated tonsillectomy and base of tongue resections. These findings support the construct validity of this prototype simulator and offer a foundation for further testing of predictive validity. Level of Evidence 2 Laryngoscope, 2021
引用
收藏
页码:1588 / 1593
页数:6
相关论文
共 50 条
  • [21] A Low-Cost 3D-Printed Cricothyrotomy Training Simulator
    Barger, John Bradley
    Gaffin, Steven S.
    FASEB JOURNAL, 2019, 33
  • [22] On the progress of 3D-printed hydrogels for tissue engineering
    Advincula, Rigoberto C.
    Dizon, John Ryan C.
    Caldona, Eugene B.
    Viers, Robert Andrew
    Siacor, Francis Dave C.
    Maalihan, Reymark D.
    Espera, Alejandro H., Jr.
    MRS COMMUNICATIONS, 2021, 11 (05) : 539 - 553
  • [23] 3D-printed membrane for guided tissue regeneration
    Tayebi, Lobat
    Rasoulianboroujeni, Morteza
    Moharamzadeh, Keyvan
    Almela, Thafar K. D.
    Cui, Zhanfeng
    Ye, Hua
    MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2018, 84 : 148 - 158
  • [24] 3D-Printed Biomaterials for Guided Tissue Regeneration
    Zhang, Ben
    Song, Jie
    SMALL METHODS, 2018, 2 (09):
  • [25] Design and validation of a 3D-printed simulator for endoscopic third ventriculostomy
    Zhu, Junhao
    Yang, Jin
    Tang, Chao
    Cong, Zixiang
    Cai, Xiangming
    Ma, Chiyuan
    CHILDS NERVOUS SYSTEM, 2020, 36 (04) : 743 - 748
  • [26] On the progress of 3D-printed hydrogels for tissue engineering
    Rigoberto C. Advincula
    John Ryan C. Dizon
    Eugene B. Caldona
    Robert Andrew Viers
    Francis Dave C. Siacor
    Reymark D. Maalihan
    Alejandro H. Espera
    MRS Communications, 2021, 11 : 539 - 553
  • [27] Design and validation of a 3D-printed simulator for endoscopic third ventriculostomy
    Junhao Zhu
    Jin Yang
    Chao Tang
    Zixiang Cong
    Xiangming Cai
    Chiyuan Ma
    Child's Nervous System, 2020, 36 : 743 - 748
  • [28] 3D-Printed Simulation Device for Orbital Surgery
    Lichtenstein, Juergen Thomas
    Zeller, Alexander Nicolai
    Lemound, Juliana
    Lichtenstein, Thorsten Enno
    Rana, Majeed
    Gellrich, Nils-Claudius
    Wagner, Maximilian Eberhard
    JOURNAL OF SURGICAL EDUCATION, 2017, 74 (01) : 2 - 8
  • [29] Biological evaluation of 3D-Printed chitosan-based scaffolds for tissue engineering
    Behrooznia, Zahra
    Nourmohammadi, Jhamak
    Mohammadi, Zahra
    Shabani, Fatemeh
    Mashhadi, Rahele
    CARBOHYDRATE RESEARCH, 2025, 551
  • [30] Towards Behavior Design of a 3D-Printed Soft Robotic Hand
    Scharff, Rob B. N.
    Doubrovski, Eugeni L.
    Poelman, Wim A.
    Jonker, Pieter P.
    Wang, Charlie C. L.
    Geraedts, Jo M. P.
    SOFT ROBOTICS: TRENDS, APPLICATIONS AND CHALLENGES, 2017, 17 : 23 - 29