Evaluation of a 3D-Printed Transoral Robotic Surgery Simulator Utilizing Artificial Tissue

被引:2
|
作者
Murr, Alexander T. [1 ]
Lumley, Catherine J. [1 ]
Feins, Richard H. [2 ]
Hackman, Trevor G. [1 ]
机构
[1] Univ N Carolina, Dept Otolaryngol Head & Neck Surg, Chapel Hill, NC 27515 USA
[2] Univ N Carolina, Dept Surg, Chapel Hill, NC 27515 USA
基金
美国国家卫生研究院;
关键词
Transoral robotic surgery; surgical simulation; 3D printing; artificial tissue; TRAINING CURRICULUM; LEARNING-CURVE; SKILLS; VALIDATION; TOOL;
D O I
10.1002/lary.29981
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
Objectives/Hypothesis Transoral robotic surgery (TORS) poses challenges for operators in training, with limited robot access on a platform requiring distinct surgical skills. Few simulators exist, and current virtual reality training modules exclude head and neck simulations. This study evaluates the construct validity for a novel low-cost TORS simulator. Study Design Single institution prospective observational study. Methods Using 3D-printed oral cavity structures and replaceable artificial tissue components, a modular TORS simulator was constructed for short-duration hands-on simulations with the da Vinci SI robot. Sixteen surgeons of differing robotic skill levels, no experience (novice), prior experience, and formal robot training, participated in simulated tonsil and tongue base tumor resections. Video recordings of each participant were graded by a blinded robotically trained surgeon using a 35-point Global Evaluative Assessment of Robotic Surgery (GEARS) criterion adapted for the TORS simulator. Results Operators reporting formal robotic training or prior robot experience achieved significantly higher mean total GEARS scores compared to novice operators (32 vs. 20.5; P < .001). Overall, mean total GEARS scores correlated with reported experience level; novice operators scored 54% of total points at 19 (4.5), operators with prior experience scored 82.3% of total points at 28.8 (2.6), and robotically trained operators scored 97.1% of total points at 34 (1.7). Conclusion With a GEARS criterion, our simulator successfully differentiated novice from experienced and robotically trained operators of the da Vinci SI robot during simulated tonsillectomy and base of tongue resections. These findings support the construct validity of this prototype simulator and offer a foundation for further testing of predictive validity. Level of Evidence 2 Laryngoscope, 2021
引用
收藏
页码:1588 / 1593
页数:6
相关论文
共 50 条
  • [11] On the progress of 3D-printed hydrogels for tissue engineering
    Advincula, Rigoberto C.
    Dizon, John Ryan C.
    Caldona, Eugene B.
    Viers, Robert Andrew
    Siacor, Francis Dave C.
    Maalihan, Reymark D.
    Espera, Alejandro H., Jr.
    MRS COMMUNICATIONS, 2021, 11 (05) : 539 - 553
  • [12] 3D-printed membrane for guided tissue regeneration
    Tayebi, Lobat
    Rasoulianboroujeni, Morteza
    Moharamzadeh, Keyvan
    Almela, Thafar K. D.
    Cui, Zhanfeng
    Ye, Hua
    MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2018, 84 : 148 - 158
  • [13] 3D-Printed Biomaterials for Guided Tissue Regeneration
    Zhang, Ben
    Song, Jie
    SMALL METHODS, 2018, 2 (09):
  • [14] Biological evaluation of 3D-Printed chitosan-based scaffolds for tissue engineering
    Behrooznia, Zahra
    Nourmohammadi, Jhamak
    Mohammadi, Zahra
    Shabani, Fatemeh
    Mashhadi, Rahele
    CARBOHYDRATE RESEARCH, 2025, 551
  • [15] Development of a Robotic System for Automated Decaking of 3D-Printed Parts
    Huy Nguyen
    Adrian, Nicholas
    Yan, Joyce Lim Xin
    Salfity, Jonathan M.
    Allen, William
    Pham, Quang-Cuong
    2020 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2020, : 8202 - 8208
  • [16] Characterization and Evaluation of 3D-Printed Connectors for Microfluidics
    Xu, Qianwen
    Lo, Jeffery C. C.
    Lee, Shiwei Ricky
    MICROMACHINES, 2021, 12 (08)
  • [17] Evaluation of the Mechanical Properties of a 3D-Printed Mortar
    Lee, Hojae
    Kim, Jang-Ho Jay
    Moon, Jae-Heum
    Kim, Won-Woo
    Seo, Eun-A
    MATERIALS, 2019, 12 (24)
  • [18] 3D-printed tubular scaffolds for vascular tissue engineering
    Rabionet, Marc
    Jesus Guerra, Antonio
    Puig, Teresa
    Ciurana, Joaquim
    19TH CIRP CONFERENCE ON ELECTRO PHYSICAL AND CHEMICAL MACHINING, 2018, 68 : 352 - 357
  • [19] A Novel 3D Printed Multi-Material Simulator for Endoscopic Stapes Surgery: The "3D Stapes Trainer"
    Molinari, Giulia
    Emiliani, Nicolas
    Cercenelli, Laura
    Bortolani, Barbara
    D'Azzeo, Rossana
    Burato, Arianna
    Presutti, Livio
    Molteni, Gabriele
    Marcelli, Emanuela
    LARYNGOSCOPE, 2025,
  • [20] Design and Kinematic Analysis of a 3D-Printed 3DOF Robotic Manipulandum
    Howard, Ian S.
    TOWARDS AUTONOMOUS ROBOTIC SYSTEMS, TAROS 2023, 2023, 14136 : 227 - 239