Compact operators on sequence spaces associated with the Copson matrix of order α

被引:3
作者
Mursaleen, M. [1 ,2 ]
Edely, Osama H. H. [3 ]
机构
[1] China Med Univ Taiwan, China Med Univ Hosp, Dept Med Res, Taichung, Taiwan
[2] St 1 West, Aligarh 202002, Uttar Pradesh, India
[3] Tafila Tech Univ, Dept Math, POB 179, Tafila 66110, Jordan
关键词
Sequence spaces; Cesaro matrix; Copson matrix; Copson matrix of order alpha; Matrix transformations; Hausdorff measure of noncompactness; Compact operators; HAUSDORFF MEASURE; TRANSFORMATIONS; NONCOMPACTNESS;
D O I
10.1186/s13660-021-02713-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we study characterizations of some matrix classes (C-(alpha)(l(p)), l(infinity)), (C-(alpha)(l(p)), c), and (C-(alpha)(l(p)), c(0)), where C-(alpha)(l(p)) is the domain of Copson matrix of order a in the space l(p) (0 < p < 1). Further, we apply the Hausdorff measures of noncompactness to characterize compact operators associated with these matrices.
引用
收藏
页数:10
相关论文
共 23 条
[1]  
Bana J., 2014, Sequence Spaces and Measures of Noncompactness with Applications to Differential and Integral Equations
[2]  
Basar F., 2012, SUMMABILITY THEORY I
[3]  
Basarir M, 2012, IRAN J SCI TECHNOL A, V35, P279
[4]   On the B-difference sequence space derived by generalized weighted mean and compact operators [J].
Basarir, Metin ;
Kara, Emrah Evren .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 391 (01) :67-81
[5]   Matrix transformations and compact operators on some new mth-order difference sequences [J].
Djolovic, Ivana ;
Malkowsky, Eberhard .
APPLIED MATHEMATICS AND COMPUTATION, 2008, 198 (02) :700-714
[6]   A note on compact operators on matrix domains [J].
Djolovic, Ivana ;
Malkowsky, Eberhard .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 340 (01) :291-303
[7]   On compact operators and some Euler B(m)-difference sequence spaces [J].
Kara, Emrah Evren ;
Basarir, Metin .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 379 (02) :499-511
[8]  
LASCARIDES CG, 1970, PROC CAMB PHILOS S-M, V68, P99
[9]  
Malkowsky E., 2000, Zb. Rad. (Beogr.), V9(17), P143
[10]   On matrix domains of triangles [J].
Malkowsky, Eberhard ;
Rakocevic, Vladimir .
APPLIED MATHEMATICS AND COMPUTATION, 2007, 189 (02) :1146-1163