Automated Data-Driven Approach for Gap Filling in the Time Series Using Evolutionary Learning

被引:3
作者
Sarafanov, Mikhail [1 ]
Nikitin, Nikolay O. [1 ]
Kalyuzhnaya, Anna, V [1 ]
机构
[1] ITMO Univ, St Petersburg, Russia
来源
16TH INTERNATIONAL CONFERENCE ON SOFT COMPUTING MODELS IN INDUSTRIAL AND ENVIRONMENTAL APPLICATIONS (SOCO 2021) | 2022年 / 1401卷
基金
俄罗斯科学基金会;
关键词
Time series forecasting; Gap filling; Machine learning; AutoML; IMPUTATION;
D O I
10.1007/978-3-030-87869-6_60
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In the paper, we propose an adaptive data-driven model-based approach for filling the gaps in time series. The approach is based on the automated evolutionary identification of the optimal structure for a composite data-driven model. It allows adapting the model for the effective gap-filling in a specific dataset without the involvement of the data scientist. As a case study, both synthetic and real datasets from different fields (environmental, economic, etc.) are used. The experiments confirm that the proposed approach allows achieving the higher quality of the gap restoration and improve the effectiveness of forecasting models.
引用
收藏
页码:633 / 642
页数:10
相关论文
共 13 条
  • [1] Recurrent Neural Networks for Multivariate Time Series with Missing Values
    Che, Zhengping
    Purushotham, Sanjay
    Cho, Kyunghyun
    Sontag, David
    Liu, Yan
    [J]. SCIENTIFIC REPORTS, 2018, 8
  • [2] Comparison of Estimating Missing Values in IoT Time Series Data Using Different Interpolation Algorithms
    Ding, Zengyu
    Mei, Gang
    Cuomo, Salvatore
    Li, Yixuan
    Xu, Nengxiong
    [J]. INTERNATIONAL JOURNAL OF PARALLEL PROGRAMMING, 2020, 48 (03) : 534 - 548
  • [3] Interpolation in Time Series: An Introductive Overview of Existing Methods, Their Performance Criteria and Uncertainty Assessment
    Lepot, Mathieu
    Aubin, Jean-Baptiste
    Clemens, Francois H. L. R.
    [J]. WATER, 2017, 9 (10)
  • [4] Loukopoulos P., 2016, 2016 Prognostics and System Health Management Conference (PHM-Chengdu), P1
  • [5] Evolutionary algorithms for the selection of time lags for time series forecasting by fuzzy inference systems
    Lukoseviciute, Kristina
    Ragulskis, Minvydas
    [J]. NEUROCOMPUTING, 2010, 73 (10-12) : 2077 - 2088
  • [6] Closed-form algebraic expressions discovery using combined evolutionary optimization and sparse regression approach
    Merezhnikov, Mark
    Hvatov, Alexander
    [J]. 9TH INTERNATIONAL YOUNG SCIENTISTS CONFERENCE IN COMPUTATIONAL SCIENCE, YSC2020, 2020, 178 : 424 - 433
  • [7] Moahmed Tawfik A., 2014, Artificial Neural Networks in Pattern Recognition. 6th IAPR TC 3 International Workshop, ANNPR 2014. Proceedings: LNCS 8774, P93, DOI 10.1007/978-3-319-11656-3_9
  • [8] Moritz S, 2017, R J, V9, P207
  • [9] Structural Evolutionary Learning for Composite Classification Models
    Nikitin, Nikolay O.
    Polonskaia, Iana S.
    Vychuzhanin, Pavel
    Barabanova, Irina, V
    Kalyuzhnaya, Anna, V
    [J]. 9TH INTERNATIONAL YOUNG SCIENTISTS CONFERENCE IN COMPUTATIONAL SCIENCE, YSC2020, 2020, 178 : 414 - 423
  • [10] Nikitin Nikolay O., 2021, AUTOMATED EVOLUTIONA