Unified subspace analysis for face recognition

被引:30
作者
Wang, XG [1 ]
Tang, XO [1 ]
机构
[1] Chinese Univ Hong Kong, Dept Informat Engn, Shatin, Hong Kong, Peoples R China
来源
NINTH IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION, VOLS I AND II, PROCEEDINGS | 2003年
关键词
D O I
10.1109/ICCV.2003.1238413
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a face difference model that decomposes face difference into three components, intrinsic difference, transformation difference, and noise. Using the face difference model and a detailed subspace analysis on the three components we develop a unified framework for subspace analysis. Using this framework we discover the inherent relationship among different subspace methods and their unique contributions to the extraction of discriminating information from the face difference. This eventually leads to the construction of a 3D parameter space that uses three subspace dimensions as axis. Within this parameter space, we develop a unified subspace analysis method that achieves better recognition performance than the standard subspace methods on over 2000 face images from the FERET database.
引用
收藏
页码:679 / 686
页数:8
相关论文
共 7 条
[1]  
[Anonymous], 1991, INTRO STAT PATTERN R
[2]   Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection [J].
Belhumeur, PN ;
Hespanha, JP ;
Kriegman, DJ .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1997, 19 (07) :711-720
[3]   Bayesian face recognition [J].
Moghaddam, B ;
Jebara, T ;
Pentland, A .
PATTERN RECOGNITION, 2000, 33 (11) :1771-1782
[4]   The FERET evaluation methodology for face-recognition algorithms [J].
Phillips, PJ ;
Moon, H ;
Rizvi, SA ;
Rauss, PJ .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2000, 22 (10) :1090-1104
[5]   EIGENFACES FOR RECOGNITION [J].
TURK, M ;
PENTLAND, A .
JOURNAL OF COGNITIVE NEUROSCIENCE, 1991, 3 (01) :71-86
[6]  
ZHAO W, 1996, CARTR914
[7]  
ZHAO W, 2002, FACE RECOGNITION LIT