A convolution integral method for certain strongly nonlinear oscillators

被引:17
|
作者
Hu, H [1 ]
Tang, JH [1 ]
机构
[1] Hunan Univ Sci & Technol, Sch Civil Engn, Xiangtan 411201, Hunan, Peoples R China
关键词
D O I
10.1016/j.jsv.2004.11.023
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
A modification of the convolution integral method for linear oscillators is presented for the analysis of certain strongly nonlinear oscillators. The modification provides an iteration scheme. Two examples are given to illustrate the effectiveness of the proposed method. (c) 2004 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1235 / 1241
页数:7
相关论文
共 50 条
  • [31] High Accurate Homo-Heteroclinic Solutions of Certain Strongly Nonlinear Oscillators Based on Generalized Padé–Lindstedt–Poincaré Method
    Zhenbo Li
    Jiashi Tang
    Journal of Vibration Engineering & Technologies, 2022, 10 : 1291 - 1308
  • [32] ON THE INTEGRAL CONVOLUTION OF CERTAIN CLASSES OF ANALYTIC FUNCTIONS
    Bednarz, Urszula
    Sokol, Janusz
    TAIWANESE JOURNAL OF MATHEMATICS, 2009, 13 (05): : 1387 - 1396
  • [33] An elliptic Lindstedt-Poincare method for certain strongly non-linear oscillators
    Chen, SH
    Cheung, YK
    NONLINEAR DYNAMICS, 1997, 12 (03) : 199 - 213
  • [34] An Elliptic Lindstedt--Poincaré Method for Certain Strongly Non-Linear Oscillators
    S. H. Chen
    Y. K. Cheung
    Nonlinear Dynamics, 1997, 12 : 199 - 213
  • [36] Elliptic Lindstedt-Poincare method for certain strongly non-linear oscillators
    Zhongshan Univ, Guangzhou, China
    Nonlinear Dyn, 3 (199-213):
  • [37] High Accurate Homo-Heteroclinic Solutions of Certain Strongly Nonlinear Oscillators Based on Generalized Pade-Lindstedt-Poincare Method
    Li, Zhenbo
    Tang, Jiashi
    JOURNAL OF VIBRATION ENGINEERING & TECHNOLOGIES, 2022, 10 (04) : 1291 - 1308
  • [38] Study of strongly nonlinear oscillators using the Aboodh transform and the homotopy perturbation method
    Manimegalai, K.
    Zephania, Sagar C. F.
    Bera, P. K.
    Bera, P.
    Das, S. K.
    Sil, Tapas
    EUROPEAN PHYSICAL JOURNAL PLUS, 2019, 134 (09):
  • [39] Application of a modified rational harmonic balance method for a class of strongly nonlinear oscillators
    Belendez, A.
    Gimeno, E.
    Alvarez, M. L.
    Mendez, D. I.
    Hernandez, A.
    PHYSICS LETTERS A, 2008, 372 (39) : 6047 - 6052
  • [40] AVERAGING METHOD USING GENERALIZED HARMONIC-FUNCTIONS FOR STRONGLY NONLINEAR OSCILLATORS
    XU, Z
    CHEUNG, YK
    JOURNAL OF SOUND AND VIBRATION, 1994, 174 (04) : 563 - 576