A convolution integral method for certain strongly nonlinear oscillators

被引:17
|
作者
Hu, H [1 ]
Tang, JH [1 ]
机构
[1] Hunan Univ Sci & Technol, Sch Civil Engn, Xiangtan 411201, Hunan, Peoples R China
关键词
D O I
10.1016/j.jsv.2004.11.023
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
A modification of the convolution integral method for linear oscillators is presented for the analysis of certain strongly nonlinear oscillators. The modification provides an iteration scheme. Two examples are given to illustrate the effectiveness of the proposed method. (c) 2004 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1235 / 1241
页数:7
相关论文
共 50 条
  • [1] Modified Homotopy Perturbation Method for Certain Strongly Nonlinear Oscillators
    Niu Yao-Bin
    Wang Zhong-Wei
    Dong Si-Wei
    CHINESE PHYSICS LETTERS, 2012, 29 (06)
  • [2] A MODIFIED LINDSTEDT-POINCARE METHOD FOR CERTAIN STRONGLY NONLINEAR OSCILLATORS
    CHEUNG, YK
    CHEN, SH
    LAU, SL
    INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 1991, 26 (3-4) : 367 - 378
  • [3] A generalization of the Senator-Bapat method for certain strongly nonlinear oscillators
    Wu, BS
    Lim, CW
    Li, PS
    PHYSICS LETTERS A, 2005, 341 (1-4) : 164 - 169
  • [4] A NONLINEAR SCALES METHOD FOR STRONGLY NONLINEAR OSCILLATORS
    XU, Z
    CHEUNG, YK
    NONLINEAR DYNAMICS, 1995, 7 (03) : 285 - 299
  • [5] A hyperbolic perturbation method for determining homoclinic solution of certain strongly nonlinear autonomous oscillators
    Chen, S. H.
    Chen, Y. Y.
    Sze, K. Y.
    JOURNAL OF SOUND AND VIBRATION, 2009, 322 (1-2) : 381 - 392
  • [6] A classical iteration procedure valid for certain strongly nonlinear oscillators
    Hu, H.
    Tang, J. H.
    JOURNAL OF SOUND AND VIBRATION, 2007, 299 (1-2) : 397 - 402
  • [7] A Melnikov method for strongly odd nonlinear oscillators
    Ge, ZM
    Ku, FN
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS SHORT NOTES & REVIEW PAPERS, 1998, 37 (3A): : 1021 - 1028
  • [8] Melnikov method for strongly odd nonlinear oscillators
    Ge, Zheng-Ming
    Ku, Fu-Neng
    Japanese Journal of Applied Physics, Part 1: Regular Papers & Short Notes & Review Papers, 1998, 37 (3 A): : 1021 - 1028
  • [9] An Analytical Approximation Method for Strongly Nonlinear Oscillators
    Wang Shimin
    Yang Lechang
    JOURNAL OF APPLIED MATHEMATICS, 2012,
  • [10] Homotopy perturbation method for strongly nonlinear oscillators
    He, Ji-Huan
    Jiao, Man-Li
    Gepreel, Khaled A.
    Khan, Yasir
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2023, 204 : 243 - 258