Systematic classification of unknown metabolites using high-resolution fragmentation mass spectra

被引:388
作者
Duehrkop, Kai [1 ]
Nothias, Louis-Felix [2 ]
Fleischauer, Markus [1 ]
Reher, Raphael [3 ]
Ludwig, Marcus [1 ]
Hoffmann, Martin A. [1 ,4 ]
Petras, Daniel [2 ,5 ]
Gerwick, William H. [3 ,6 ]
Rousu, Juho [7 ]
Dorrestein, Pieter C. [2 ]
Boecker, Sebastian [1 ]
机构
[1] Friedrich Schiller Univ, Chair Bioinformat, Jena, Germany
[2] Univ Calif San Diego, Collaborat Mass Spectrometry Innovat Ctr, Skaggs Sch Pharm & Pharmaceut Sci, La Jolla, CA 92093 USA
[3] Univ Calif San Diego, Scripps Inst Oceanog, Ctr Marine Biotechnol & Biomed, La Jolla, CA 92093 USA
[4] Max Planck Inst Chem Ecol, Int Max Planck Res Sch Explorat Ecol Interact Mol, Jena, Germany
[5] Univ Calif San Diego, Scripps Inst Oceanog, La Jolla, CA 92093 USA
[6] Univ Calif San Diego, Skaggs Sch Pharm & Pharmaceut Sci, La Jolla, CA 92093 USA
[7] Aalto Univ, Helsinki Inst Informat Technol, Dept Comp Sci, Espoo, Finland
关键词
SPECTROMETRY DATA; MOLECULAR NETWORKING; MS/MS FRAGMENTATION; EUPHORBIA; DATABASES; IDENTIFICATION; PHYLOGENETICS; SUBSTRUCTURES; METABOLOMICS; ANNOTATION;
D O I
10.1038/s41587-020-0740-8
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Metabolomics using nontargeted tandem mass spectrometry can detect thousands of molecules in a biological sample. However, structural molecule annotation is limited to structures present in libraries or databases, restricting analysis and interpretation of experimental data. Here we describe CANOPUS (class assignment and ontology prediction using mass spectrometry), a computational tool for systematic compound class annotation. CANOPUS uses a deep neural network to predict 2,497compound classes from fragmentation spectra, including all biologically relevant classes. CANOPUS explicitly targets compounds for which neither spectral nor structural reference data are available and predicts classes lacking tandem mass spectrometry training data. In evaluation using reference data, CANOPUS reached very high prediction performance (average accuracy of 99.7% in cross-validation) and outperformed four baseline methods. We demonstrate the broad utility of CANOPUS by investigating the effect of microbial colonization in the mouse digestive system, through analysis of the chemodiversity of different Euphorbia plants and regarding the discovery of a marine natural product, revealing biological insights at the compound class level. Unknown metabolites are classified from mass spectrometry data.
引用
收藏
页码:462 / +
页数:24
相关论文
共 79 条
  • [1] Abadi M, 2016, PROCEEDINGS OF OSDI'16: 12TH USENIX SYMPOSIUM ON OPERATING SYSTEMS DESIGN AND IMPLEMENTATION, P265
  • [2] Global chemical analysis of biology by mass spectrometry
    Aksenov, Alexander A.
    da Silva, Ricardo
    Knight, Rob
    Lopes, Norberto P.
    Dorrestein, Pieter C.
    [J]. NATURE REVIEWS CHEMISTRY, 2017, 1 (07)
  • [3] Integration of Molecular Networking and In-Silico MS/MS Fragmentation for Natural Products Dereplication
    Allard, Pierre-Marie
    Peresse, Tiphaine
    Bisson, Jonathan
    Gindro, Katia
    Marcourt, Laurence
    Van Cuong Pham
    Roussi, Fanny
    Litaudon, Marc
    Wolfender, Jean-Luc
    [J]. ANALYTICAL CHEMISTRY, 2016, 88 (06) : 3317 - 3323
  • [4] Competitive fragmentation modeling of ESI-MS/MS spectra for putative metabolite identification
    Allen, Felicity
    Greiner, Russ
    Wishart, David
    [J]. METABOLOMICS, 2015, 11 (01) : 98 - 110
  • [5] ARISTO: ontological classification of small molecules by electron ionization-mass spectrometry
    Askenazi, Manor
    Linial, Michal
    [J]. NUCLEIC ACIDS RESEARCH, 2011, 39 : W505 - W510
  • [6] Chemical Similarity Enrichment Analysis (ChemRICH) as alternative to biochemical pathway mapping for metabolomic datasets
    Barupal, Dinesh Kumar
    Fiehn, Oliver
    [J]. SCIENTIFIC REPORTS, 2017, 7
  • [7] XCMS2:: Processing tandem mass spectrometry data for metabolite identification and structural characterization
    Benton, H. P.
    Wong, D. M.
    Trauger, S. A.
    Siuzdak, G.
    [J]. ANALYTICAL CHEMISTRY, 2008, 80 (16) : 6382 - 6389
  • [8] Structure Annotation of All Mass Spectra in Untargeted Metabolomics
    Blazenovic, Ivana
    Kind, Tobias
    Sa, Michael R.
    Ji, Jian
    Vaniya, Arpana
    Wancewicz, Benjamin
    Roberts, Bryan S.
    Torbasinovic, Hrvoje
    Lee, Tack
    Mehta, Sajjan S.
    Showalter, Megan R.
    Song, Hosook
    Kwok, Jessica
    Jahn, Dieter
    Kim, Jayoung
    Fiehn, Oliver
    [J]. ANALYTICAL CHEMISTRY, 2019, 91 (03) : 2155 - 2162
  • [9] Software Tools and Approaches for Compound Identification of LC-MS/MS Data in Metabolomics
    Blazenovic, Ivana
    Kind, Tobias
    Ji, Jian
    Fiehn, Oliver
    [J]. METABOLITES, 2018, 8 (02):
  • [10] Automated compound classification using a chemical ontology
    Bobach, Claudia
    Boehme, Timo
    Laube, Ulf
    Pueschel, Anett
    Weber, Lutz
    [J]. JOURNAL OF CHEMINFORMATICS, 2012, 4