Convergence and superconvergence analysis of finite element methods for the time fractional diffusion equation

被引:20
|
作者
Li, Meng [1 ]
Shi, Dongyang [1 ]
Pei, Lifang [1 ]
机构
[1] Zhengzhou Univ, Sch Math & Stat, Zhengzhou 450001, Peoples R China
基金
中国博士后科学基金;
关键词
Two dimensional TFDE; Nonuniform L2-1(sigma) formula; Bilinear FEM; Modified quasi-Wilson FEM; Superconvergence; DISCONTINUOUS GALERKIN METHOD; ERROR ANALYSIS;
D O I
10.1016/j.apnum.2019.12.023
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, two classes of finite element methods (FEMs) for the two-dimensional time fractional diffusion equation (TFDE) with non-smooth solution are proposed and analyzed. In the temporal direction, we adopt nonuniform L2-1(sigma) method, and in the spatial direction, the conforming bilinear element and the nonconforming modified quasi-Wilson element are utilized. For the proposed conforming and nonconforming FEMs, by using new fractional discrete Gronwall inequalities, the theoretical analysis including the L-2-norm error estimates and H-1-norm superclose results are given in details. Furthermore, by virtue of the interpolated postprocessing techniques, the global H-1-norm superconvergence results are presented. Finally, some numerical results illustrate the correctness of theoretical analysis. (C) 2020 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:141 / 160
页数:20
相关论文
共 50 条
  • [21] Convergence and superconvergence analysis of finite element methods on graded meshes for singularly and semisingularly perturbed reaction-diffusion problems
    Zhu, Guoqing
    Chen, Shaochun
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2008, 220 (1-2) : 373 - 393
  • [22] Superconvergence of a Finite Element Method for the Multi-term Time-Fractional Diffusion Problem
    Chaobao Huang
    Martin Stynes
    Journal of Scientific Computing, 2020, 82
  • [23] Superconvergence of a Finite Element Method for the Multi-term Time-Fractional Diffusion Problem
    Huang, Chaobao
    Stynes, Martin
    JOURNAL OF SCIENTIFIC COMPUTING, 2020, 82 (01)
  • [24] Superconvergence analysis of finite element method for the time-dependent Schrodinger equation
    Wang, Jianyun
    Huang, Yunqing
    Tian, Zhikun
    Zhou, Jie
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2016, 71 (10) : 1960 - 1972
  • [25] Finite element method for space-time fractional diffusion equation
    L. B. Feng
    P. Zhuang
    F. Liu
    I. Turner
    Y. T. Gu
    Numerical Algorithms, 2016, 72 : 749 - 767
  • [26] Finite element method for space-time fractional diffusion equation
    Feng, L. B.
    Zhuang, P.
    Liu, F.
    Turner, I.
    Gu, Y. T.
    NUMERICAL ALGORITHMS, 2016, 72 (03) : 749 - 767
  • [27] Error analysis of semidiscrete finite element methods for inhomogeneous time-fractional diffusion
    Jin, Bangti
    Lazarov, Raytcho
    Pasciak, Joseph
    Zhou, Zhi
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2015, 35 (02) : 561 - 582
  • [28] Global superconvergence analysis of nonconforming finite element method for time fractional reaction-diffusion problem with anisotropic data
    Wei, Yabing
    Lu, Shujuan
    Wang, Fenling
    Liu, F.
    Zhao, Yanmin
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2022, 119 : 159 - 173
  • [29] Convergence and superconvergence analysis for nonlinear delay reaction-diffusion system with nonconforming finite element
    Peng, Shanshan
    Li, Meng
    Zhao, Yanmin
    Wang, Fenling
    Shi, Yanhua
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2023, 39 (01) : 716 - 743
  • [30] Convergence Order of a Finite Volume Scheme for the Time-Fractional Diffusion Equation
    Bradji, Abdallah
    Fuhrmann, Jurgen
    NUMERICAL ANALYSIS AND ITS APPLICATIONS (NAA 2016), 2017, 10187 : 33 - 45