A brain-inspired computational model for spatio-temporal information processing

被引:20
作者
Lin, Xiaohan [1 ]
Zou, Xiaolong [1 ,2 ]
Ji, Zilong [1 ,2 ]
Huang, Tiejun [1 ]
Wu, Si [1 ,2 ]
Mi, Yuanyuan [3 ,4 ]
机构
[1] Peking Univ, Sch Elect Engn & Comp Sci, 5 Yiheyuan Rd, Beijing 100871, Peoples R China
[2] Peking Univ, PKU Tsinghua Ctr Life Sci, Sch Psychol & Cognit Sci, IDG McGovern Inst Brain Res, 5 Yiheyuan Rd, Beijing 100871, Peoples R China
[3] Chongqing Univ, Ctr Neurointelligence, Sch Med, 174 Shazhengjie, Chongqing 400044, Peoples R China
[4] AI Res Ctr, Peng Cheng Lab, 2 Xingke First St, Shenzhen 518005, Peoples R China
基金
中国国家自然科学基金;
关键词
Spatio-temporal pattern; Brain-inspired; Reservoir computing; Decision-making; SUPERIOR COLLICULUS; TRANSIENT DYNAMICS; ACTION RECOGNITION; TIME; RESPONSES; CORTEX; REPRESENTATIONS; PERCEPTION; STRATEGIES; MECHANISM;
D O I
10.1016/j.neunet.2021.05.015
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Spatio-temporal information processing is fundamental in both brain functions and AI applications. Current strategies for spatio-temporal pattern recognition usually involve explicit feature extraction followed by feature aggregation, which requires a large amount of labeled data. In the present study, motivated by the subcortical visual pathway and early stages of the auditory pathway for motion and sound processing, we propose a novel brain-inspired computational model for generic spatio-temporal pattern recognition. The model consists of two modules, a reservoir module and a decision-making module. The former projects complex spatio-temporal patterns into spatially separated neural representations via its recurrent dynamics, the latter reads out neural representations via integrating information over time, and the two modules are linked together using known examples. Using synthetic data, we demonstrate that the model can extract the frequency and order information of temporal inputs. We apply the model to reproduce the looming pattern discrimination behavior as observed in experiments successfully. Furthermore, we apply the model to the gait recognition task, and demonstrate that our model accomplishes the recognition in an event-based manner and outperforms deep learning counterparts when training data is limited. (C) 2021 The Authors. Published by Elsevier Ltd.
引用
收藏
页码:74 / 87
页数:14
相关论文
共 77 条
[1]  
Baccouche Moez, 2011, Human Behavior Unterstanding. Proceedings Second International Workshop, HBU 2011, P29, DOI 10.1007/978-3-642-25446-8_4
[2]   Real-time computation at the edge of chaos in recurrent neural networks [J].
Bertschinger, N ;
Natschläger, T .
NEURAL COMPUTATION, 2004, 16 (07) :1413-1436
[3]   State-dependent computations: spatiotemporal processing in cortical networks [J].
Buonomano, Dean V. ;
Maass, Wolfgang .
NATURE REVIEWS NEUROSCIENCE, 2009, 10 (02) :113-125
[4]   Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset [J].
Carreira, Joao ;
Zisserman, Andrew .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :4724-4733
[5]   Re-evaluating Circuit Mechanisms Underlying Pattern Separation [J].
Cayco-Gajic, N. Alex ;
Silver, R. Angus .
NEURON, 2019, 101 (04) :584-602
[6]   A Large-Scale Circuit Mechanism for Hierarchical Dynamical Processing in the Primate Cortex [J].
Chaudhuri, Rishidev ;
Knoblauch, Kenneth ;
Gariel, Marie-Alice ;
Kennedy, Henry ;
Wang, Xiao-Jing .
NEURON, 2015, 88 (02) :419-431
[7]   Histograms of oriented gradients for human detection [J].
Dalal, N ;
Triggs, B .
2005 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOL 1, PROCEEDINGS, 2005, :886-893
[8]   Vision Guides Selection of Freeze or Flight Defense Strategies in Mice [J].
De Franceschi, Gioia ;
Vivattanasam, Tipok ;
Saleem, Aman B. ;
Solomon, Samuel G. .
CURRENT BIOLOGY, 2016, 26 (16) :2150-2154
[9]   Intact navigation skills after bilateral loss of striate cortex [J].
de Gelder, Beatrice ;
Tamietto, Marco ;
van Boxtel, Geert ;
Goebel, Rainer ;
Sahraie, Arash ;
van den Stock, Jan ;
Stienen, Bernard M. C. ;
Weiskrantz, Lawrence ;
Pegna, Alan .
CURRENT BIOLOGY, 2008, 18 (24) :R1128-R1129
[10]   full-FORCE: A target-based method for training recurrent networks [J].
DePasquale, Brian ;
Cueva, Christopher J. ;
Rajan, Kanaka ;
Escola, G. Sean ;
Abbott, L. F. .
PLOS ONE, 2018, 13 (02)