On Algebraic Independence of Solutions of Generalized Hypergeometric Equations

被引:2
作者
Gorelov, Vasily [1 ]
机构
[1] Natl Res Univ, Moscow Power Engn Inst, Moscow 111250, Russia
关键词
generalized hypergeometric functions; algebraic independence; Siegel's method; VALUES;
D O I
10.3390/axioms10040289
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present solutions for general theorems regarding algebraic independence of solutions of hypergeometric equation ensembles and the values of these solutions at algebraic points. The conditions of the theorems are necessary and sufficient. Furthermore, errors in theorems from F. Beukers and others are corrected.
引用
收藏
页数:11
相关论文
共 21 条
[11]   About Cogredient and Contragredient Linear Differential Equations [J].
Gorelov, Vasily .
AXIOMS, 2021, 10 (02)
[12]  
[Горелов Василий Александрович Gorelov Vasily Alekzandrovich], 2020, [Чебышевский сборник, Chebyshevskii sbornik], V21, P135, DOI 10.22405/2226-8383-2020-21-1-135-144
[13]  
Kaplansky I., 1957, DIFFERENTIAL ALGEBRA
[14]  
KATZ NM, 1990, ANN MATH STUD, P1
[15]   ALGEBRAIC GROUPS AND ALGEBRAIC DEPENDENCE [J].
KOLCHIN, ER .
AMERICAN JOURNAL OF MATHEMATICS, 1968, 90 (04) :1151-&
[16]  
Kratzer A., 1960, Transzendente Funktionen
[17]  
Luke Yu. L., 1975, MATH FUNCTIONS THEIR
[18]  
Salikhov V.K., 1989, T MOSCOW MATH SOC, P219
[19]  
SALIKHOV VK, 1990, ACTA ARITH, V53, P453
[20]  
Shidlovsky A.B., 1989, TRANSCENDENTAL NUMBE