Punctual Hilbert schemes for Kleinian singularities as quiver varieties

被引:4
|
作者
Craw, Alastair [1 ]
Gammelgaard, Soren [2 ]
Gyenge, Adam [3 ]
Szendroi, Balazs [2 ]
机构
[1] Univ Bath, Dept Math Sci, Bath BA2 7AY, Avon, England
[2] Univ Oxford, Math Inst, Oxford OX2 6GG, England
[3] Alfred Renyi Inst Math, Realtanoda Utca 13-15, H-1053 Budapest, Hungary
来源
ALGEBRAIC GEOMETRY | 2021年 / 8卷 / 06期
基金
英国工程与自然科学研究理事会;
关键词
Hilbert scheme of points; quiver variety; Kleinian singularity; preprojective algebra; cornered algebra; REPRESENTATIONS; INSTANTONS;
D O I
10.14231/AG-2021-021
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a finite subgroup Gamma subset of SL(2, C) and n >= 1, we construct the (reduced scheme underlying the) Hilbert scheme of n points on the Kleinian singularity C-2/Gamma as a Nakajima quiver variety for the framed McKay quiver of Gamma, taken at a specific non-generic stability parameter. We deduce that this Hilbert scheme is irreducible (a result previously due to Zheng), normal and admits a unique symplectic resolution. More generally, we introduce a class of algebras obtained from the preprojective algebra of the framed McKay quiver by removing an arrow and then 'cornering', and we show that fine moduli spaces of cyclic modules over these new algebras are isomorphic to quiver varieties for the framed McKay quiver and certain non-generic choices of the stability parameter.
引用
收藏
页码:680 / 704
页数:25
相关论文
共 50 条
  • [31] Graded quiver varieties and derived categories
    Keller, Bernhard
    Scherotzke, Sarah
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2016, 713 : 85 - 127
  • [32] TYPE A QUIVER LOCI AND SCHUBERT VARIETIES
    Kinser, Ryan
    Rajchgot, Jenna
    JOURNAL OF COMMUTATIVE ALGEBRA, 2015, 7 (02) : 265 - 301
  • [33] Motivic Classes of Nakajima Quiver Varieties
    Wyss, Dimitri
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2017, 2017 (22) : 6961 - 6976
  • [34] Quiver varieties and Weyl group actions
    Lusztig, G
    ANNALES DE L INSTITUT FOURIER, 2000, 50 (02) : 461 - +
  • [35] Topological strings, quiver varieties, and Rogers-Ramanujan identities
    Zhu, Shengmao
    RAMANUJAN JOURNAL, 2019, 48 (02) : 399 - 421
  • [36] Quiver Grassmannians and degenerate flag varieties
    Irelli, Giovanni Cerulli
    Feigin, Evgeny
    Reineke, Markus
    ALGEBRA & NUMBER THEORY, 2012, 6 (01) : 165 - 194
  • [37] Quiver varieties and crystals in symmetrizable type via modulated graphs
    Nandakumar, Vinoth
    Tingley, Peter
    MATHEMATICAL RESEARCH LETTERS, 2018, 25 (01) : 159 - 180
  • [38] Comparison of quiver varieties, loop Grassmannians and nilpotent cones in type A
    Mirkovic, Ivan
    Vybornov, Maxim
    Krylov, Vasily
    ADVANCES IN MATHEMATICS, 2022, 407
  • [39] Quiver varieties and the quantum Knizhnik–Zamolodchikov equation
    P. Zinn-Justin
    Theoretical and Mathematical Physics, 2015, 185 : 1741 - 1758
  • [40] Graded quiver varieties, quantum cluster algebras and dual canonical basis
    Kimura, Yoshiyuki
    Qin, Fan
    ADVANCES IN MATHEMATICS, 2014, 262 : 261 - 312