Punctual Hilbert schemes for Kleinian singularities as quiver varieties

被引:4
|
作者
Craw, Alastair [1 ]
Gammelgaard, Soren [2 ]
Gyenge, Adam [3 ]
Szendroi, Balazs [2 ]
机构
[1] Univ Bath, Dept Math Sci, Bath BA2 7AY, Avon, England
[2] Univ Oxford, Math Inst, Oxford OX2 6GG, England
[3] Alfred Renyi Inst Math, Realtanoda Utca 13-15, H-1053 Budapest, Hungary
来源
ALGEBRAIC GEOMETRY | 2021年 / 8卷 / 06期
基金
英国工程与自然科学研究理事会;
关键词
Hilbert scheme of points; quiver variety; Kleinian singularity; preprojective algebra; cornered algebra; REPRESENTATIONS; INSTANTONS;
D O I
10.14231/AG-2021-021
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a finite subgroup Gamma subset of SL(2, C) and n >= 1, we construct the (reduced scheme underlying the) Hilbert scheme of n points on the Kleinian singularity C-2/Gamma as a Nakajima quiver variety for the framed McKay quiver of Gamma, taken at a specific non-generic stability parameter. We deduce that this Hilbert scheme is irreducible (a result previously due to Zheng), normal and admits a unique symplectic resolution. More generally, we introduce a class of algebras obtained from the preprojective algebra of the framed McKay quiver by removing an arrow and then 'cornering', and we show that fine moduli spaces of cyclic modules over these new algebras are isomorphic to quiver varieties for the framed McKay quiver and certain non-generic choices of the stability parameter.
引用
收藏
页码:680 / 704
页数:25
相关论文
共 50 条
  • [21] On Transitive Action on Quiver Varieties
    Chen, Xiaojun
    Eshmatov, Farkhod
    Eshmatov, Alimjon
    Tikaradze, Akaki
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2022, 2022 (10) : 7694 - 7728
  • [22] On the Irreducibility of Some Quiver Varieties
    Bartocci, Claudio
    Bruzzo, Ugo
    Lanza, Valeriano
    Rava, Claudio L. S.
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2020, 16
  • [23] Diagram automorphisms of quiver varieties
    Henderson, Anthony
    Licata, Anthony
    ADVANCES IN MATHEMATICS, 2014, 267 : 225 - 276
  • [24] Quantized multiplicative quiver varieties
    Jordan, David
    ADVANCES IN MATHEMATICS, 2014, 250 : 420 - 466
  • [25] Symplectic resolutions of quiver varieties
    Gwyn Bellamy
    Travis Schedler
    Selecta Mathematica, 2021, 27
  • [26] Kirwan surjectivity for quiver varieties
    McGerty, Kevin
    Nevins, Thomas
    INVENTIONES MATHEMATICAE, 2018, 212 (01) : 161 - 187
  • [27] Preprojective algebras, differential operators and a Conze embedding for deformations of Kleinian singularities
    Crawley-Boevey, W
    COMMENTARII MATHEMATICI HELVETICI, 1999, 74 (04) : 548 - 574
  • [28] HANDSAW QUIVER VARIETIES AND FINITE W-ALGEBRAS
    Nakajima, Hiraku
    MOSCOW MATHEMATICAL JOURNAL, 2012, 12 (03) : 633 - 666
  • [29] On the equations and classification of toric quiver varieties
    Domokos, Matyas
    Joo, Daniel
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2016, 146 (02) : 265 - 295
  • [30] Generalized quiver varieties and triangulated categories
    Scherotzke, Sarah
    MATHEMATISCHE ZEITSCHRIFT, 2019, 292 (3-4) : 1453 - 1478