Gallium-substituted hexagonal mesoporous silicas (Ga-HMS) with various Si/Ga ratios in the range of 15 and 200 were prepared at ambient temperature by neutral surfanctant templating pathway. The materials were synthesized by using dodecylamine as a template and tetraethylorthosilicate as a silicon source. They were characterized by energy dispersive X-ray spectroscopy, powder X-ray diffraction (XRD), N-2 adsorption-desorption, thermogravimetric analysis, differential scanning calorimetry, scanning electron microscopy, transmission electron microscopy, Fourier-transform infrared absorption spectroscopy and ultraviolet-visible absorption spectroscopy. Ga-HMS samples had high surface areas and uniform mesoporous channels, which are similar to MCM-41. However, they differed from MCM-41 in presenting only a single peak in XRD patterns. They also possessed other characters of larger framework wall thickness, small crystallite domain sizes, and complementary textural mesoporosities in comparison with M41S materials. Ga-HMS materials had micropores and the hysteresis loops were obvious. These small crystallite size and complementary textural mesoporosity provided better access of the framework-confined mesopores. These mesoporous Ga-HMS samples exhibited irregularly shaped mesoscale fundamental particles which aggregated into larger particles. They also demonstrated better thermal stability than MCM-41. The textural pore volumes of Ga-HMS specimens could be up to 20 times as large as the framework volumes. The surfactant could be removed completely by calcination at 650 degrees C. An absorption band of FT-IR at ca. 960 cm(-1) was assigned to the vibration of Si-O-Ga linkages. These samples also showed an absorbance band at 255 nm and 250 nm in UV-vis spectra. The results show that gallium was incorporated into the structure of HMS. The efforts in preparing Ga-HMS specimens by neutral-template synthesis route had led to new mesoporous silica molecular sieves with catalytically active gallium centers.