'THE AMSR2 SATELLITE-BASED MICROWAVE SNOW ALGORITHM (SMSA): A NEW ALGORITHM FOR ESTIMATING GLOBAL SNOW ACCUMULATION

被引:4
作者
Kelly, Richard [1 ]
Li, Qinghuan [1 ]
Saberi, Nastaran [1 ]
机构
[1] Univ Waterloo, Dept Geog & Environm Management, Waterloo, ON N2L 3G1, Canada
来源
2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019) | 2019年
关键词
Passive Microwave; Snow Depth; Snow Water Equivalent; DMRT-ML; WATER EQUIVALENT; DEPTH;
D O I
10.1109/igarss.2019.8898525
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Moderate to high spatial resolution (<1 km) regional to global snow water equivalent (SWE) observation approaches are not yet available and so the long-term satellite passive microwave record remains an important tool for cryosphere-climate diagnostics. A new satellite microwave remote sensing approach for estimating snow depth (SD) and snow water equivalent (SWE) is presented called the Satellite-based Microwave Snow Algorithm (SMSA). Using the Advanced Microwave Scanning Radiometer - 2 (AMSR2) observations the approach leverages observed brightness temperatures (Tb) with static ancillary data to parameterize a physically-based retrieval. The SD and SWE retrieval approach minimizes the difference between Dense Media Radiative Transfer model estimates (Tsang et al., 2000; Picard et al., 2012) and AMSR2 Tb observations. Parameterization of the model combines a parsimonious snow grain size and density approach originally developed by Kelly et al. (2003). Evaluation of the SMSA performance is achieved using in situ snow depth data from a variety of standard and experiment data sources. Results presented from winter seasons 2012-13 to 2018-19 illustrate the improved performance of the new approach in comparison with the baseline AMSR2 algorithm estimates. Given the variation in estimation power of SWE by different land surface/climate models and selected satellite-derived passive microwave approaches, SMSA provides SWE estimates that are independent of real or near real-time in situ and model data.
引用
收藏
页码:5606 / 5609
页数:4
相关论文
共 12 条
[1]  
Brasnett B, 1999, J APPL METEOROL, V38, P726, DOI 10.1175/1520-0450(1999)038<0726:AGAOSD>2.0.CO
[2]  
2
[3]  
Hedstrom NR, 1998, HYDROL PROCESS, V12, P1611, DOI 10.1002/(SICI)1099-1085(199808/09)12:10/11<1611::AID-HYP684>3.0.CO
[4]  
2-4
[5]  
Holloway J.L., 1958, Advances in Geophysics, P351, DOI DOI 10.1016/S0065-2687(08)60487-2
[6]  
Kelly R.E. J., 2009, J. Remote Sens. Soc. Japan, V29, P307, DOI [10.11440/rssj.29.307, DOI 10.11440/RSSJ.29.307]
[7]   A prototype AMSR-E global snow area and snow depth algorithm [J].
Kelly, RE ;
Chang, AT ;
Tsang, L ;
Foster, JL .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2003, 41 (02) :230-242
[8]   Simulation of the microwave emission of multi-layered snowpacks using the Dense Media Radiative transfer theory: the DMRT-ML model [J].
Picard, G. ;
Brucker, L. ;
Roy, A. ;
Dupont, F. ;
Fily, M. ;
Royer, A. ;
Harlow, C. .
GEOSCIENTIFIC MODEL DEVELOPMENT, 2013, 6 (04) :1061-1078
[9]   Vapor transport, grain growth and depth-hoar development in the subarctic snow [J].
Sturm, M ;
Benson, CS .
JOURNAL OF GLACIOLOGY, 1997, 43 (143) :42-59
[10]   Estimating Snow Water Equivalent Using Snow Depth Data and Climate Classes [J].
Sturm, Matthew ;
Taras, Brian ;
Liston, Glen E. ;
Derksen, Chris ;
Jonas, Tobias ;
Lea, Jon .
JOURNAL OF HYDROMETEOROLOGY, 2010, 11 (06) :1380-1394