Experimental Considerations for Single-Cell RNA Sequencing Approaches

被引:121
作者
Nguyen, Quy H. [1 ]
Pervolarakis, Nicholas [2 ]
Nee, Kevin [1 ]
Kessenbrock, Kai [1 ]
机构
[1] Univ Calif Irvine, Dept Biol Chem, Irvine, CA 92717 USA
[2] Univ Calif Irvine, Ctr Complex Biol Syst, Irvine, CA USA
关键词
single-cell genomics; single-cell analysis; cell isolation; computational biology; cellular heterogeneity; GENE-EXPRESSION; OSMOTIC-STRESS; SEQ; REVEALS; HETEROGENEITY; ATLAS;
D O I
10.3389/fcell.2018.00108
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Single-cell transcriptomic technologies have emerged as powerful tools to explore cellular heterogeneity at the resolution of individual cells. Previous scientific knowledge in cell biology is largely limited to data generated by bulk profiling methods, which only provide averaged read-outs that generally mask cellular heterogeneity. This averaged approach is particularly problematic when the biological effect of interest is limited to only a subpopulation of cells such as stem/progenitor cells within a given tissue, or immune cell subsets infiltrating a tumor. Great advances in single-cell RNA sequencing (scRNAseq) enabled scientists to overcome this limitation and allow for in depth interrogation of previously unexplored rare cell types. Due to the high sensitivity of scRNAseq, adequate attention must be put into experimental setup and execution. Careful handling and processing of cells for scRNAseq is critical to preserve the native expression profile that will ensure meaningful analysis and conclusions. Here, we delineate the individual steps of a typical single-cell analysis workflow from tissue procurement, cell preparation, to platform selection and data analysis, and we discuss critical challenges in each of these steps, which will serve as a helpful guide to navigate the complex field of single-cell sequencing.
引用
收藏
页数:7
相关论文
共 55 条
[1]   Cell fixation and preservation for droplet-based single-cell transcriptomics [J].
Alles, Jonathan ;
Karaiskos, Nikos ;
Praktiknjo, Samantha D. ;
Grosswendt, Stefanie ;
Wahle, Philipp ;
Ruffault, Pierre-Louis ;
Ayoub, Salah ;
Schreyer, Luisa ;
Boltengagen, Anastasiya ;
Birchmeier, Carmen ;
Zinzen, Robert ;
Kocks, Christine ;
Rajewsky, Nikolaus .
BMC BIOLOGY, 2017, 15
[2]  
Ambati Suresh, 2016, BMC Obes, V3, P35, DOI 10.1186/s40608-016-0112-6
[3]  
[Anonymous], 2016, NUCL ACIDS RES, DOI DOI 10.1093/NAR/GKW430
[4]  
[Anonymous], 2015, WIDESPREAD CRITICAL
[5]   Efficient and reproducible generation of tumour-infiltrating lymphocytes for renal cell carcinoma [J].
Baldan, V. ;
Griffiths, R. ;
Hawkins, R. E. ;
Gilham, D. E. .
BRITISH JOURNAL OF CANCER, 2015, 112 (09) :1510-1518
[6]   Comparison of the contributions of the nuclear and cytoplasmic compartments to global gene expression in human cells [J].
Barthelson, Roger A. ;
Lambert, Georgina M. ;
Vanier, Cheryl ;
Lynch, Ronald M. ;
Galbraith, David W. .
BMC GENOMICS, 2007, 8 (1)
[7]   Single-cell chromatin accessibility reveals principles of regulatory variation [J].
Buenostro, Jason D. ;
Wu, Beijing ;
Litzenburger, Ulrike M. ;
Ruff, Dave ;
Gonzales, Michael L. ;
Snyder, Michael P. ;
Chang, Howard Y. ;
Greenleaf, William J. .
NATURE, 2015, 523 (7561) :486-U264
[8]   Integrating single-cell transcriptomic data across different conditions, technologies, and species [J].
Butler, Andrew ;
Hoffman, Paul ;
Smibert, Peter ;
Papalexi, Efthymia ;
Satija, Rahul .
NATURE BIOTECHNOLOGY, 2018, 36 (05) :411-+
[9]   A MONOCLONAL ANTIBODY AGAINST RAGE ALTERS GENE EXPRESSION AND IS PROTECTIVE IN EXPERIMENTAL MODELS OF SEPSIS AND PNEUMOCOCCAL PNEUMONIA [J].
Christaki, Eirini ;
Opal, Steven M. ;
Keith, James C., Jr. ;
Kessimian, Nubar ;
Palardy, John E. ;
Parejo, Nicolas A. ;
Tan, Xiang Yang ;
Piche-Nicholas, Nicole ;
Tchistiakova, Lioudmila ;
Vlasuk, George P. ;
Shields, Kathleen M. ;
Feldman, Jeffrey L. ;
LaVallie, Edward R. ;
Arai, Maya ;
Mounts, William ;
Pittman, Debra D. .
SHOCK, 2011, 35 (05) :492-498
[10]   CellTree: an R/bioconductor package to infer the hierarchical structure of cell populations from single-cell RNA-seq data [J].
duVerle, David A. ;
Yotsukura, Sohiya ;
Nomura, Seitaro ;
Aburatani, Hiroyuki ;
Tsuda, Koji .
BMC BIOINFORMATICS, 2016, 17