Uncertainties of gross primary productivity of Chinese grasslands based on multi-source estimation

被引:6
作者
He, Panxing [1 ]
Ma, Xiaoliang [1 ,2 ]
Han, Zhiming [3 ]
Meng, Xiaoyu [4 ]
Sun, Zongjiu [1 ]
机构
[1] Xinjiang Agr Univ, Coll Grassland, Grassland Minist Educ, Key Lab Western Arid Reg Grassland Resources & Eco, Urumqi, Peoples R China
[2] Lanzhou Univ, Coll Pastoral Agr Sci & Technol, State Key Lab Grassland Agroecosyst, Lanzhou, Peoples R China
[3] Northwest A&F Univ, Coll Resources & Environm, Yangling, Peoples R China
[4] Henan Univ, Key Res Inst Yellow River Civilizat & Sustainable, Dev Collaborat Innovat Ctr Yellow River Civilizat, Kaifeng, Peoples R China
基金
中国国家自然科学基金;
关键词
gross primary productivity; uncertainty; Chinese grasslands; MsTIMP; ISIMIP; MODEL INTERCOMPARISON PROJECT; PROGRAM MULTISCALE SYNTHESIS; NET PRIMARY PRODUCTIVITY; WATER-USE EFFICIENCY; CARBON STORAGE; TERRESTRIAL; CLIMATE; RESPONSES; CYCLE; FLUX;
D O I
10.3389/fenvs.2022.928351
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Gross primary productivity (GPP) is an important parameter in the carbon cycle and climate change studies. The results of GPP fluxes estimated based on multiple models or remote sensing vary widely, but current studies of GPP in Chinese grasslands tend to ignore data uncertainty. In this study, uncertainty analysis of GPP datasets estimated based on terrestrial ecosystem models and remote sensing was conducted using cross-validation, standard error statistics, and ensemble empirical modal decomposition. We found that 1) the fit coefficients R-2 of two-by-two cross-validation of GPP datasets mostly exceeded 0.8 at the global scale. 2) GPP from different sources were consistent in portraying the spatial and temporal patterns of GPP in Chinese grasslands. However, due to many differences in model structure, parameterization and driving data, some uncertainties still exist, especially in the parts of dry-cold areas where the standard deviations are relatively large. 3) Uncertainties were higher for future scenarios than for historical periods, and GPP uncertainties were much higher for future high-emissions scenarios than for low- and medium-emissions scenarios. This study highlighted the need for uncertainty analysis when GPP is applied to spatio-temporal analysis, and suggested that when comparing and assessing carbon balance conditions, multiple source data sets should be combined to avoid misleading conclusion due to uncertainty.
引用
收藏
页数:13
相关论文
共 39 条
[1]   Climate-driven uncertainties in modeling terrestrial gross primary production: a site level to global-scale analysis [J].
Barman, Rahul ;
Jain, Atul K. ;
Liang, Miaoling .
GLOBAL CHANGE BIOLOGY, 2014, 20 (05) :1394-1411
[2]   Modelling the role of agriculture for the 20th century global terrestrial carbon balance [J].
Bondeau, Alberte ;
Smith, Pascalle C. ;
Zaehle, Soenke ;
Schaphoff, Sibyll ;
Lucht, Wolfgang ;
Cramer, Wolfgang ;
Gerten, Dieter ;
Lotze-Campen, Hermann ;
Mueller, Christoph ;
Reichstein, Markus ;
Smith, Benjamin .
GLOBAL CHANGE BIOLOGY, 2007, 13 (03) :679-706
[3]   Presentation and Evaluation of the IPSL-CM6A-LR Climate Model [J].
Boucher, Olivier ;
Servonnat, Jerome ;
Albright, Anna Lea ;
Aumont, Olivier ;
Balkanski, Yves ;
Bastrikov, Vladislav ;
Bekki, Slimane ;
Bonnet, Remy ;
Bony, Sandrine ;
Bopp, Laurent ;
Braconnot, Pascale ;
Brockmann, Patrick ;
Cadule, Patricia ;
Caubel, Arnaud ;
Cheruy, Frederique ;
Codron, Francis ;
Cozic, Anne ;
Cugnet, David ;
D'Andrea, Fabio ;
Davini, Paolo ;
de Lavergne, Casimir ;
Denvil, Sebastien ;
Deshayes, Julie ;
Devilliers, Marion ;
Ducharne, Agnes ;
Dufresne, Jean-Louis ;
Dupont, Eliott ;
Ethe, Christian ;
Fairhead, Laurent ;
Falletti, Lola ;
Flavoni, Simona ;
Foujols, Marie-Alice ;
Gardoll, Sebastien ;
Gastineau, Guillaume ;
Ghattas, Josefine ;
Grandpeix, Jean-Yves ;
Guenet, Bertrand ;
Guez, Lionel E. ;
Guilyardi, Eric ;
Guimberteau, Matthieu ;
Hauglustaine, Didier ;
Hourdin, Frederic ;
Idelkadi, Abderrahmane ;
Joussaume, Sylvie ;
Kageyama, Masa ;
Khodri, Myriam ;
Krinner, Gerhard ;
Lebas, Nicolas ;
Levavasseur, Guillaume ;
Levy, Claire .
JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS, 2020, 12 (07)
[4]   Uncertainties of soil moisture in historical simulations and future projections [J].
Cheng, Shanjun ;
Huang, Jianping ;
Ji, Fei ;
Lin, Lei .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2017, 122 (04) :2239-2253
[5]   EMERGING PLANT-SCIENCE - WILL PLANTS PROFIT FROM HIGH CO2 [J].
CULOTTA, E .
SCIENCE, 1995, 268 (5211) :654-656
[6]   Comparison, validation, and transferability of eight multiyear global soil wetness products [J].
Dirmeyer, PA ;
Guo, ZC ;
Gao, X .
JOURNAL OF HYDROMETEOROLOGY, 2004, 5 (06) :1011-1033
[7]   Reliability ensemble averaging of 21st century projections of terrestrial net primary productivity reduces global and regional uncertainties [J].
Exbrayat, Jean-Francois ;
Bloom, A. Anthony ;
Falloon, Pete ;
Ito, Akihiko ;
Smallman, T. Luke ;
Williams, Mathew .
EARTH SYSTEM DYNAMICS, 2018, 9 (01) :153-165
[8]   Gap filling strategies for long term energy flux data sets [J].
Falge, E ;
Baldocchi, D ;
Olson, R ;
Anthoni, P ;
Aubinet, M ;
Bernhofer, C ;
Burba, G ;
Ceulemans, G ;
Clement, R ;
Dolman, H ;
Granier, A ;
Gross, P ;
Grünwald, T ;
Hollinger, D ;
Jensen, NO ;
Katul, G ;
Keronen, P ;
Kowalski, A ;
Lai, CT ;
Law, BE ;
Meyers, T ;
Moncrieff, J ;
Moors, E ;
Munger, JW ;
Pilegaard, K ;
Rannik, Ü ;
Rebmann, C ;
Suyker, A ;
Tenhunen, J ;
Tu, K ;
Verma, S ;
Vesala, T ;
Wilson, K ;
Wofsy, S .
AGRICULTURAL AND FOREST METEOROLOGY, 2001, 107 (01) :71-77
[9]   ORCHIDEE-MICT (v8.4.1), a land surface model for the high latitudes: model description and validation [J].
Guimberteau, Matthieu ;
Zhu, Dan ;
Maignan, Fabienne ;
Huang, Ye ;
Yue, Chao ;
Dantec-Nedelec, Sarah ;
Ottle, Catherine ;
Jornet-Puig, Albert ;
Bastos, Ana ;
Laurent, Pierre ;
Goll, Daniel ;
Bowring, Simon ;
Chang, Jinfeng ;
Guenet, Bertrand ;
Tifafi, Marwa ;
Peng, Shushi ;
Krinner, Gerhard ;
Ducharne, Agnes ;
Wang, Fuxing ;
Wang, Tao ;
Wang, Xuhui ;
Wang, Yilong ;
Yin, Zun ;
Lauerwald, Ronny ;
Joetzjer, Emilie ;
Qiu, Chunjing ;
Kim, Hyungjun ;
Ciais, Philippe .
GEOSCIENTIFIC MODEL DEVELOPMENT, 2018, 11 (01) :121-163
[10]   Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset [J].
Harris, Ian ;
Osborn, Timothy J. ;
Jones, Phil ;
Lister, David .
SCIENTIFIC DATA, 2020, 7 (01)