A new method for CO2 capture:: Frosting CO2 at atmospheric pressure

被引:0
|
作者
Clodic, D [1 ]
Younes, M [1 ]
机构
[1] Ctr Energy Studies, Ecole Mines, F-75272 Paris 06, France
来源
GREENHOUSE GAS CONTROL TECHNOLOGIES, VOLS I AND II, PROCEEDINGS | 2003年
关键词
D O I
暂无
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
CO2 capture in the flue gas of energy production facilities shows a great advantage providing that it is performed at atmospheric pressure. Taking into account that the triple point Of CO2 is at 520 kPa and 56degreesC, the only possibility to capture CO2 at atmospheric pressure is to freeze it on cold surface. This frosting is performed with a system consisting in an integrated cascade, which is a vapor compressor system using progressive distillation of a refrigerant blend in order to evaporate at low temperature (between -130 and -110degreesC) and at sufficient high pressure to keep an acceptable pressure ratio for a single stage compressor. The design and control of the frosting/defrosting on the heat exchanger surface permits the recovery of fusion heat when CO2 changes from solid to liquid phase. This latent heat of fusion is used to cool down the liquid blend of refrigerants just prior to evaporation. The paper presents the global design of the system, the energy consumption and the coefficient of performance of this low temperature refrigerating system.
引用
收藏
页码:155 / 160
页数:6
相关论文
共 50 条
  • [1] Development of Chemical CO2 Solvent for High-Pressure CO2 Capture
    Yamamoto, Shin
    Machida, Hiroshi
    Fujioka, Yuichi
    Higashii, Takayuki
    GHGT-11, 2013, 37 : 505 - 517
  • [2] Streamer propagation in CO2 and N2/CO2 mixtures at atmospheric pressure
    Omori, Kento
    Ono, Ryo
    Komuro, Atsushi
    Plasma Sources Science and Technology, 2024, 33 (12)
  • [3] CO2 capture
    Sun, Jian
    Li, Keke
    Xiong, Yunhan
    Li, Xiaohui
    Zhang, Xiaoyu
    Sun, Rongyue
    Zhou, Zijian
    SEPARATION AND PURIFICATION TECHNOLOGY, 2025, 354
  • [4] CO2 Decomposition in CO2 and CO2/H2 Spark-like Plasma Discharges at Atmospheric Pressure
    Kelly, Sean
    Sullivan, James A.
    CHEMSUSCHEM, 2019, 12 (16) : 3785 - 3791
  • [5] ATMOSPHERIC CO2
    TANLAW
    NEW SCIENTIST, 1979, 84 (1175) : 57 - 57
  • [6] Coupling electrochemical CO2 conversion with CO2 capture
    Ian Sullivan
    Andrey Goryachev
    Ibadillah A. Digdaya
    Xueqian Li
    Harry A. Atwater
    David A. Vermaas
    Chengxiang Xiang
    Nature Catalysis, 2021, 4 : 952 - 958
  • [7] Coupling electrochemical CO2 conversion with CO2 capture
    Sullivan, Ian
    Goryachev, Andrey
    Digdaya, Ibadillah A.
    Li, Xueqian
    Atwater, Harry A.
    Vermaas, David A.
    Xiang, Chengxiang
    NATURE CATALYSIS, 2021, 4 (11) : 952 - 958
  • [8] Atmospheric CO2 capture for the artificial photosynthetic system
    Nogalska, Adrianna
    Zukowska, Adrianna
    Garcia-Valls, Ricard
    SCIENCE OF THE TOTAL ENVIRONMENT, 2018, 621 : 186 - 192
  • [9] Atmospheric CO2 capture for the artificial photosynthetic system
    Nogalska, Adrianna
    Zukowska, Adrianna
    Garcia-Valls, Ricard
    INTERNATIONAL CONFERENCE ON ADVANCES IN ENERGY SYSTEMS AND ENVIRONMENTAL ENGINEERING (ASEE17), 2017, 22
  • [10] Carboxylation of Phenols with CO2 at Atmospheric Pressure
    Luo, Junfei
    Preciado, Sara
    Xie, Pan
    Larrosa, Igor
    CHEMISTRY-A EUROPEAN JOURNAL, 2016, 22 (20) : 6798 - 6802