Unstable trigger waves induce various intricate dynamic regimes in a reaction-diffusion system of blood clotting

被引:23
作者
Lobanova, ES [1 ]
Ataullakhanov, FI
机构
[1] Moscow MV Lomonosov State Univ, Dept Phys, Moscow 119899, Russia
[2] Russian Acad Med Sci, Natl Res Ctr Hematol, Moscow 125167, Russia
关键词
D O I
10.1103/PhysRevLett.91.138301
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this work we demonstrate that the unstable trigger waves, connecting stable and unstable spatially uniform steady states, can create intricate dynamic regimes in one-dimensional three-component reaction-diffusion model describing blood clotting. Among the most interesting regimes are the composite and replicating waves running at a constant velocity. The front part of the running composite wave remains constant, while its rear part oscillates in a complex manner. The rear part of the running replicating wave periodically gives rise to new daughter waves, which propagate in the direction opposite the parent wave. The domain of these intricate regimes in parameter space lies in the region of monostability near the region of bistability.
引用
收藏
页码:138301 / 138301
页数:4
相关论文
共 17 条
[1]  
[Anonymous], 1987, AUTOWAVE PROCESSES K
[2]   Spatiotemporal dynamics of clotting and pattern formation in human blood [J].
Ataullakhanov, FI ;
Guria, GT ;
Sarbash, VI ;
Volkova, RI .
BIOCHIMICA ET BIOPHYSICA ACTA-GENERAL SUBJECTS, 1998, 1425 (03) :453-468
[3]   A new class of stopping self-sustained waves: a factor determining the spatial dynamics of blood coagulation [J].
Ataullakhanov, FI ;
Zarnitsyna, VI ;
Kondratovich, AY ;
Lobanova, ES ;
Sarbash, VI .
PHYSICS-USPEKHI, 2002, 45 (06) :619-636
[4]  
*EPAPS, EPRLTAO91035336 EPAP
[5]   PATTERN-FORMATION IN NONGRADIENT REACTION-DIFFUSION SYSTEMS - THE EFFECTS OF FRONT BIFURCATIONS [J].
HAGBERG, A ;
MERON, E .
NONLINEARITY, 1994, 7 (03) :805-835
[6]   Self-replicating pulses and Sierpinski gaskets in excitable media [J].
Hayase, Y ;
Ohta, T .
PHYSICAL REVIEW E, 2000, 62 (05) :5998-6003
[7]   Self-replication of a pulse in excitable reaction-diffusion systems [J].
Hayase, Y ;
Ohta, T .
PHYSICAL REVIEW E, 2002, 66 (03) :1-036218
[8]   LOCALIZED PATTERNS IN REACTION-DIFFUSION SYSTEMS [J].
KOGA, S ;
KURAMOTO, Y .
PROGRESS OF THEORETICAL PHYSICS, 1980, 63 (01) :106-121
[9]   Wave-induced chemical chaos [J].
Merkin, JH ;
Petrov, V ;
Scott, SK ;
Showalter, K .
PHYSICAL REVIEW LETTERS, 1996, 76 (03) :546-549
[10]   Nonannihilation dynamics in an exothermic reaction-diffusion system with mono-stable excitability [J].
Mimura, M ;
Nagayama, M .
CHAOS, 1997, 7 (04) :817-826