Combining data-and-model-driven 3D modelling (CDMD3DM) for small indoor scenes using RGB-D data

被引:7
作者
Li, Chang [1 ,2 ]
Guan, Tianrong [1 ,2 ]
Yang, Meng [3 ]
Zhang, Ce [1 ,2 ]
机构
[1] Cent China Normal Univ, Key Lab Geog Proc Analysing & Modelling, 152 Luoyu Rd, Wuhan 430079, Peoples R China
[2] Cent China Normal Univ, Coll Urban & Environm Sci, 152 Luoyu Rd, Wuhan 430079, Peoples R China
[3] Chinese Acad Sci, Inst Urban Environm, Jimei Rd, Xiamen 361021, Peoples R China
基金
中国国家自然科学基金;
关键词
Combining data-and-model-driven 3D modelling (CDMD3DM); Indoor scene; RGB-D; Generalized point photogrammetry; Deep learning; Instance segmentation; TERRESTRIAL LASER SCANNER; SEMANTIC SEGMENTATION; POINT CLOUDS; LIDAR; IMAGE; RECONSTRUCTION; REGISTRATION; NETWORK;
D O I
10.1016/j.isprsjprs.2021.08.006
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
To solve problems in 3D modelling, including unclear 3D edges in point clouds, lack of geometric semantics, confusing topological relations between 3D models, and low degree of automation in traditional model-driven 3D modelling, a method for high-accuracy and automatic monomer 3D modelling must be developed. This paper is the first to propose a 3D modelling strategy, called combining data-and-model-driven 3D modelling (CDMD3DM), for small regular objects in indoor scenes using RGB-D data. The proposed method's workflow is as follows: generation of initial 3D point cloud data using data-driven Kinect v2; segmentation of point cloud data, based on deep learning, that improves the accuracy and automation of geometric model recognition; definition of the initial model-driven parameters based on the instance segmentation results; optimization of geometric model parameters, based on generalized point photogrammetry theory, to generate monomer models in indoor scenes to overcome the shortcomings of confusing topological relationships and inaccurate 3D model edges; and finally, fusion of the results of data-driven and model-driven 3D modelling. The experimental results demonstrate that CDMD3DM is feasible, automatic, more accurate, more reliable, semantically richer and capable of producing clearer topological relationships than current 3D modelling results using indoor RGB-D data. These outcomes promote interdisciplinary integration between computer vision and photogrammetry.
引用
收藏
页码:1 / 13
页数:13
相关论文
共 52 条
  • [1] 3D Semantic Parsing of Large-Scale Indoor Spaces
    Armeni, Iro
    Sener, Ozan
    Zamir, Amir R.
    Jiang, Helen
    Brilakis, Ioannis
    Fischer, Martin
    Savarese, Silvio
    [J]. 2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, : 1534 - 1543
  • [2] Large-scale parameterization of 3D building morphology in complex urban landscapes using aerial LiDAR and city administrative data
    Bonczak, Bartosz
    Kontokosta, Constantine E.
    [J]. COMPUTERS ENVIRONMENT AND URBAN SYSTEMS, 2019, 73 : 126 - 142
  • [3] Ceriani S., 2019, ROBOT AUTONOMOUS SYS, V123
  • [4] Chi Y., 2013, 2013 IEEE INT, P1, DOI [DOI 10.1155/2013/146860, 10.1109/PTC.2013.6652262]
  • [5] Automated segmentation of RGB-D images into a comprehensive set of building components using deep learning
    Czerniawski, Thomas
    Leite, Fernanda
    [J]. ADVANCED ENGINEERING INFORMATICS, 2020, 45 (45)
  • [6] On introducing an image-based 3D reconstruction method in archaeological excavation practice
    De Reu, Jeroen
    De Smedt, Philippe
    Herremans, Davy
    Van Meirvenne, Marc
    Laloo, Pieter
    De Clercq, Wim
    [J]. JOURNAL OF ARCHAEOLOGICAL SCIENCE, 2014, 41 : 251 - 262
  • [7] Unsupervised object region proposals for RGB-D indoor scenes
    Deng, Zhuo
    Todorovic, Sinisa
    Latecki, Longin Jan
    [J]. COMPUTER VISION AND IMAGE UNDERSTANDING, 2017, 154 : 127 - 136
  • [8] Dimitrievski M, 2017, IEEE INT VEH SYM, P1058, DOI 10.1109/IVS.2017.7995854
  • [9] Registration of large-scale terrestrial laser scanner point clouds: A review and benchmark
    Dong, Zhen
    Liang, Fuxun
    Yang, Bisheng
    Xu, Yusheng
    Zang, Yufu
    Li, Jianping
    Wang, Yuan
    Dai, Wenxia
    Fan, Hongchao
    Hyyppa, Juha
    Stilla, Uwe
    [J]. ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2020, 163 : 327 - 342
  • [10] Mapping Indoor Spaces by Adaptive Coarse-to-Fine Registration of RGB-D Data
    dos Santos, Daniel R.
    Basso, Marcos A.
    Khoshelham, Kourosh
    de Oliveira, Elizeu, Jr.
    Pavan, Nadisson L.
    Vosselman, George
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2016, 13 (02) : 262 - 266