Integrated modeling of the peer-to-peer markets in the energy industry

被引:3
作者
Alvarez, Gonzalo E. [1 ]
机构
[1] INGAR CONICET UTN, Inst Desarrollo & Diseno, Avellaneda 3657,S3000, Santa Fe, Argentina
关键词
Optimization; Energy system integration; P2P electricity trading; Traditional systems; Decentralized systems; Electricity Industry; SMART; SYSTEM; TECHNOLOGIES;
D O I
10.5267/j.ijiec.2021.7.002
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Over time, the number of smart grids installed worldwide is gradually increasing. However, the major portion of the required electricity is still being produced by traditional large-scale and centralized power systems. The main requirement, then, is to study and develop mathematical methods that attend the integration between the two systems previously announced. In this paper, a novel model that addresses this issue is presented. The model minimizes the total operating cost of the large-scale system considering the participation of the smart grid as a dynamic entity, entailing a close relationship between both systems. This approach distinguishes the novel proposal from others that solve similar situations by taking into account the two systems in isolation. Besides, the models that represent the most common organizational structures of the smart grids are also presented in this paper. They are needed to develop the integrated model. Many similar problems in the literature are solved by implementing decomposition techniques, which might obtain a local optimum different from the global one. By contrast, problems with this proposal are solved by using mixed-integer linear programming models that ensure the reaching of a global optimum. The real test case is the integrated Argentine large-scale system and the Armstrong smart grid. Results indicate that the novel model can reach solutions that are 5% lower in comparison with the traditional techniques of considering in isolation. Efficient CPU times enable the possibility of promptly obtaining solutions if there is any change in the parameters. In addition, other benefits, apart from the economical reductions, are also achieved. Operating information closer to the reality of both systems is obtained because it considers the effects of the smart grid in large-scale system solving. (c) 2022 by the authors; licensee Growing Science, Canada
引用
收藏
页码:101 / 118
页数:18
相关论文
共 48 条
  • [1] Integrated scheduling from a diversity of sources applied to the Argentine electric power and natural gas systems
    Alvarez, Gonzalo E.
    [J]. COMPUTERS & CHEMICAL ENGINEERING, 2020, 134 (134)
  • [2] [Anonymous], 2011, IBM ILOG CPLEX optimization studio 12.4
  • [3] Ardani Kristen., 2018, Cost-Reduction Roadmap for Residential Solar Photovoltaics (PV), 2017-2030
  • [4] Urban energy generation: Influence of micro-wind turbine output on electricity consumption in buildings
    Bahaj, A. S.
    Myers, L.
    James, P. A. B.
    [J]. ENERGY AND BUILDINGS, 2007, 39 (02) : 154 - 165
  • [5] Integrating gas energy storage system in a peer-to-peer community energy market for enhanced operation
    Basnet, Ashim
    Zhong, Jin
    [J]. INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2020, 118
  • [6] Delivering a highly distributed electricity system: Technical, regulatory and policy challenges
    Bell, Keith
    Gill, Simon
    [J]. ENERGY POLICY, 2018, 113 : 765 - 777
  • [7] Analysis of barriers to implement blockchain in industry and service sectors
    Biswas, Baidyanath
    Gupta, Rohit
    [J]. COMPUTERS & INDUSTRIAL ENGINEERING, 2019, 136 : 225 - 241
  • [8] Bussieck MR, 2004, APPL OPTIMIZAT, V88, P137
  • [9] De Martini P, 2015, Tech. rep.
  • [10] A survey on smart grid technologies and applications
    Dileep, G.
    [J]. RENEWABLE ENERGY, 2020, 146 (146) : 2589 - 2625