Sums of powers of Catalan triangle numbers

被引:11
|
作者
Miana, Pedro J. [1 ]
Ohtsuka, Hideyuki [2 ]
Romero, Natalia [3 ]
机构
[1] Univ Zaragoza, Dept Matemat, Inst Univ Matemat & Aplicac, E-50009 Zaragoza, Spain
[2] Bunkyo Univ, High Sch, 1191-7 Kami, Ageo City, Saitama 3620001, Japan
[3] Univ La Rioja, Dept Matemat & Computac, Logrono 26004, Spain
关键词
Catalan numbers; Combinatorial identities; Binomial coefficients; Catalan triangle; HARMONIC NUMBERS; IDENTITIES; SUMMATION;
D O I
10.1016/j.disc.2017.05.006
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider combinatorial numbers (Cm,k)m >= i,k >= 0, mentioned as Catalan triangle numbers where C-m,C-k := ((m-1)(k)) - ((m-1) (k-1)). These numbers unify the entries of the Catalan triangles B-n,B-k and A(n,k) for appropriate values of parameters in and k, i.e., B-n,B-k = C-2n,C-n-k and A(n,k) = C-2n+1,C-n+1-k. In fact, these numbers are suitable rearrangements of the known ballot numbers and some of these numbers are the well-known Catalan numbers C-n, that is C-2n,C-n-1 = C-2n+1,C-n = C-n. We present identities for sums (and alternating sums) of C-m,C-k squares and cubes of C-m,C-k and, consequently, for B-n,B-k and A(n,k). In particular, one of these identities solves an open problem posed in Gutierrez et al. (2008). We also give some identities between (C-m,C-k)(m >= 1,1k >= 0) and harmonic numbers (H-n)n >= 1. Finally, in the last section, new open problems and identities involving (C-n)(n >= 0) are conjectured. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:2388 / 2397
页数:10
相关论文
共 50 条
  • [31] HARMONIC NUMBER SUMS IN HIGHER POWERS
    Sofo, Anthony
    JOURNAL OF MATHEMATICAL ANALYSIS, 2011, 2 (02): : 15 - 22
  • [32] FACTORS OF SUMS AND ALTERNATING SUMS INVOLVING BINOMIAL COEFFICIENTS AND POWERS OF INTEGERS
    Guo, Victor J. W.
    Zeng, Jiang
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2011, 7 (07) : 1959 - 1976
  • [33] kth price auctions and Catalan numbers
    Nawar, Abdel-Hameed
    Sen, Debapriya
    ECONOMICS LETTERS, 2018, 172 : 69 - 73
  • [34] The inverse versine function and sums containing reciprocal central binomial coefficients and reciprocal Catalan numbers
    Stewart, Sean M.
    INTERNATIONAL JOURNAL OF MATHEMATICAL EDUCATION IN SCIENCE AND TECHNOLOGY, 2022, 53 (07) : 1955 - 1966
  • [35] A Note on the Sequence Related to Catalan Numbers
    Zhang, Jin
    Chen, Zhuoyu
    SYMMETRY-BASEL, 2019, 11 (03):
  • [36] Evaluations of sums involving harmonic numbers and binomial coefficients
    Wang, Weiping
    Xu, Ce
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2019, 25 (07) : 1007 - 1023
  • [37] CONGRUENCES INVOLVINlG SUMS OF HARMONIC NUMBERS AND BINOMIAL COEFFICIENTS
    Elkhiri, Laid
    Mihoubi, Miloud
    Derbal, Abdellah
    MATHEMATICA MONTISNIGRI, 2020, 47 : 15 - 21
  • [38] Intersection Numbers on Fibrations and Catalan Numbers
    Haemaelaeinen, Rimma
    Lo, Jason
    Morales, Edward
    EXPERIMENTAL MATHEMATICS, 2024, 33 (04) : 768 - 775
  • [39] Moments on Catalan numbers
    Chen, Xiaojing
    Chu, Wenchang
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 349 (02) : 311 - 316
  • [40] Noncommutative Catalan Numbers
    Arkady Berenstein
    Vladimir Retakh
    Annals of Combinatorics, 2019, 23 : 527 - 547