Maximum Power Point Tracking Using ANFIS for a Reconfigurable PV-Based Battery Charger Under Non-Uniform Operating Conditions

被引:39
作者
Ibrahim, Sara A. [1 ]
Nasr, Ahmed [1 ,2 ]
Enany, Mohamed A. [1 ]
机构
[1] Zagazig Univ, Elect Power & Machines Dept, Fac Engn, Zagazig 44519, Egypt
[2] Univ Nottingham Ningbo China, Key Lab More Elect Aircraft Technol Zhejiang Prov, Ningbo 315100, Peoples R China
关键词
Maximum power point trackers; Predictive models; Mathematical model; Photovoltaic systems; Fuzzy logic; Temperature control; Resistance; Adaptive neuro-fuzzy inference system (ANFIS); battery charging; maximum power point tracking (MPPT); non-uniform irradiance; photovoltaic system (PV); partial shading; reconfigurable PV system; PHOTOVOLTAIC SYSTEMS; MPPT ALGORITHM; SINGLE-DIODE; MODEL; EXTRACTION; PERTURB;
D O I
10.1109/ACCESS.2021.3103039
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper investigates an adaptive neuro-fuzzy inference system (ANFIS)-based maximum power point tracking (MPPT) technique applied to a reconfigurable photovoltaic (PV)-based battery charger. The proposed method uses training data collected from a dynamic model of the PV module to train the ANFIS to locate the maximum power point (MPP) under different environmental conditions. Based on the estimated MPP, the proposed method can select the optimal configuration of a PV array and the corresponding global MPP under the non-uniform distribution of the temperature and irradiance. In this way, the proposed method can guarantee the highest possible power harvesting to charge a lithium-ion battery under either partial shading conditions or characteristics mismatch, achieving a high system efficiency. The proposed method is compared with the conventional MPPT scheme to verify its feasibility and effectiveness. The verification results show that the proposed method provides higher accuracy, faster response and better tracking efficiency.
引用
收藏
页码:114457 / 114467
页数:11
相关论文
共 39 条
[21]   An Effective Salp Swarm Based MPPT for Photovoltaic Systems Under Dynamic and Partial Shading Conditions [J].
Jamaludin, Mohd Nasrul Izzani ;
Tajuddin, Mohammad Faridun Naim ;
Ahmed, Jubaer ;
Azmi, Azralmukmin ;
Azmi, Syahrul Ashikin ;
Ghazali, Nur Hafizah ;
Babu, Thanikanti Sudhakar ;
Alhelou, Hassan Haes .
IEEE ACCESS, 2021, 9 (09) :34570-34589
[22]   PV-Battery Systems for Critical Loads During Emergencies A Case Study from Puerto Rico After Hurricane Maria [J].
Keerthisinghe, Chanaka ;
Ahumada-Paras, Mareldi ;
Pozzo, Lilo D. ;
Kirschen, Daniel S. ;
Pontes, Hugo ;
Tatum, Wesley K. ;
Matos, Marvi A. .
IEEE POWER & ENERGY MAGAZINE, 2019, 17 (01) :82-92
[23]   A High-Performance Global Maximum Power Point Tracker of PV System for Rapidly Changing Partial Shading Conditions [J].
Kermadi, Mostefa ;
Salam, Zainal ;
Ahmed, Jubaer ;
Berkouk, El Madjid .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2021, 68 (03) :2236-2245
[24]  
MathWorks, 2021, BATTERY MODELING MOD
[25]  
Mroczka J, 2019, INT CONF RENEW ENERG, P445, DOI [10.1109/icrera47325.2019.8996962, 10.1109/ICRERA47325.2019.8996962]
[26]   Comparative analysis of distributed MPPT controllers for partially shaded stand alone photovoltaic systems [J].
Muthuramalingam, M. ;
Manoharan, P. S. .
ENERGY CONVERSION AND MANAGEMENT, 2014, 86 :286-299
[27]   A Hybrid ANFIS-ABC Based MPPT Controller for PV System With Anti-Islanding Grid Protection: Experimental Realization [J].
Padmanaban, Sanjeevikumar ;
Priyadarshi, Neeraj ;
Bhaskar, Mahajan Sagar ;
Holm-Nielsen, Jens Bo ;
Ramachandaramurthy, Vigna K. ;
Hossain, Eklas .
IEEE ACCESS, 2019, 7 :103377-103389
[28]  
Plett GL, 2015, ART HOUSE POW ENG, P1
[29]  
Priyadarshi Neeraj, 2019, Proceedings of 2nd International Conference on Communication, Computing and Networking. ICCCN 2018. Lecture Notes in Networks and Systems (LNNS 46), P901, DOI 10.1007/978-981-13-1217-5_88
[30]  
Priyadarshi N., 2018, 2018 2 IEEE INT C PO, P102