Research on spatial image enhancement based on deep learning

被引:0
|
作者
Ni Yue [1 ]
Zhang Yao-lei [1 ,2 ]
Jiang Xiao-yue [2 ]
Chao Lu-jing [1 ]
Ben Xun [2 ]
机构
[1] China Acad Launch Vehicle Technol, Beijing 100076, Peoples R China
[2] Northwestern Polytech Univ, Xian 710119, Peoples R China
来源
SEVENTH SYMPOSIUM ON NOVEL PHOTOELECTRONIC DETECTION TECHNOLOGY AND APPLICATIONS | 2021年 / 11763卷
关键词
image enhancement; ResNet; Retinex; deep learning;
D O I
10.1117/12.2587323
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In view of the problem that visible light image in space is affected by ambient light, the image signal-to-noise ratio is low, and the local shadow is caused when part of the target area is blocked, a method for image enhancement in space dark light condition is proposed, which can effectively enhance the target information in space low light condition. By building the space target model acquisition test environment, the space target sample image set under different lighting conditions was established. Through the deep network model based on ResNet built in this paper, the training and testing of the image sample set were completed, and the effective enhancement of the space target image under low lighting conditions was realized. In order to objectively evaluate the effect of the algorithm, compared the peak signal to noise ratio (PSNR) and natural statistics characteristics (NIQE) of the proposed algorithm with the preferred dark channel algorithm and the multi-scale Retinex algorithm, The results show that the indexes of the image results processed by the proposed algorithm are superior to the comparison algorithm. The research results can effectively improve the image quality degradation caused by insufficient illumination and illumination Angle constraints, provide high-quality data guarantee for subsequent image interpretation, and realize the overall improvement of the perception and recognition ability of the applied platform.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Low-light image enhancement based on deep learning: a survey
    Wang, Yong
    Xie, Wenjie
    Liu, Hongqi
    OPTICAL ENGINEERING, 2022, 61 (04)
  • [2] A deep learning based image enhancement approach for autonomous driving at night
    Li, Guofa
    Yang, Yifan
    Qu, Xingda
    Cao, Dongpu
    Li, Keqiang
    KNOWLEDGE-BASED SYSTEMS, 2021, 213 (213)
  • [3] Image Enhancement for Tuberculosis Detection Using Deep Learning
    Munadi, Khairul
    Muchtar, Kahlil
    Maulina, Novi
    Pradhan, Biswajeet
    IEEE ACCESS, 2020, 8 : 217897 - 217907
  • [4] Research and analysis of deep learning image enhancement algorithm based on fractional differential
    Liu, Kai
    Tian, Yanzhao
    CHAOS SOLITONS & FRACTALS, 2020, 131 (131)
  • [5] Deep Learning Based Cystoscopy Image Enhancement
    Ye, Zixing
    Luo, Shun
    Wang, Lianpo
    JOURNAL OF ENDOUROLOGY, 2024, : 962 - 968
  • [6] Research on Image Sharpness Enhancement Technology based on Depth Learning
    Lan, Wenbao
    Che, Chang
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2023, 14 (02) : 714 - 722
  • [7] Research on Image Classification Based on Deep Learning
    Li, Jiao
    Nanchang, Cheng
    Song, Kang
    2021 IEEE/ACIS 20TH INTERNATIONAL CONFERENCE ON COMPUTER AND INFORMATION SCIENCE (ICIS 2021-SUMMER), 2021, : 132 - 136
  • [8] Detection of dental periapical lesions using retinex based image enhancement and lightweight deep learning model
    Latke, Vaishali
    Narawade, Vaibhav
    IMAGE AND VISION COMPUTING, 2024, 146
  • [9] Deep learning-based single image face depth data enhancement
    Schlett, Torsten
    Rathgeb, Christian
    Busch, Christoph
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2021, 210
  • [10] A Survey of Deep Learning-Based Low-Light Image Enhancement
    Tian, Zhen
    Qu, Peixin
    Li, Jielin
    Sun, Yukun
    Li, Guohou
    Liang, Zheng
    Zhang, Weidong
    SENSORS, 2023, 23 (18)