Weak Convergence of an Iterative Method for Pseudomonotone Variational Inequalities and Fixed-Point Problems

被引:92
作者
Ceng, L. C. [2 ,3 ]
Teboulle, M. [4 ]
Yao, J. C. [1 ]
机构
[1] Natl Sun Yat Sen Univ, Dept Appl Math, Kaohsiung 804, Taiwan
[2] Shanghai Normal Univ, Dept Math, Shanghai 200234, Peoples R China
[3] Sci Comp Key Lab Shanghai Univ, Shanghai, Peoples R China
[4] Tel Aviv Univ, Sch Math Sci, IL-69978 Tel Aviv, Israel
基金
美国国家科学基金会;
关键词
Variational inequalities; Nonexpansive mappings; Extragradient methods; Approximate proximal methods; Pseudomonotone mappings; Fixed points; Weak convergence; Opial condition; NONEXPANSIVE-MAPPINGS; EXTRAGRADIENT METHOD; MONOTONE; THEOREM;
D O I
10.1007/s10957-010-9650-0
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We consider an iterative scheme for finding a common element of the set of solutions of a pseudomonotone, Lipschitz-continuous variational inequality problem and the set of common fixed points of N nonexpansive mappings. The proposed iterative method combines two well-known schemes: extragradient and approximate proximal methods. We derive a necessary and sufficient condition for weak convergence of the sequences generated by the proposed scheme.
引用
收藏
页码:19 / 31
页数:13
相关论文
共 20 条
  • [1] Antipin A.S., 2000, Comput. Math. Math. Phys., V40, P1239
  • [2] ANTIPIN AS, 2004, COMP MATH MATH PHYS, V44, P750
  • [3] Berinde V, 2007, LECT NOTES MATH, V1912, P1
  • [4] An extragradient-like approximation method for variational inequality problems and fixed point problems
    Ceng, Lu-Chuan
    Yao, Jen-Chih
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2007, 190 (01) : 205 - 215
  • [5] Facchinei F., 2003, SPRINGER SERIES OPER, VII
  • [6] FACCHINEI F, 2003, SPRINGER SERIES OPER, V1
  • [7] Goebel K., 1990, Topics in Metric Fixed Point Theory
  • [8] Iiduka H., 2004, PANAMERICAN MATH J, V14, P49
  • [9] Iiduka H., 2006, ADV NONLINEAR VAR IN, V9, P1
  • [10] KORPELEVICH GM, 1977, MATEKON, V13, P35