Machine learning in resting-state fMRI analysis

被引:136
作者
Khosla, Meenakshi [1 ]
Jamison, Keith [2 ]
Ngo, Gia H. [1 ]
Kuceyeski, Amy [2 ,3 ]
Sabuncu, Mert R. [1 ,4 ]
机构
[1] Cornell Univ, Sch Elect & Comp Engn, 300 Frank HT Rhodes Hall, Ithaca, NY 14853 USA
[2] Weill Cornell Med Coll, Radiol, New York, NY USA
[3] Weill Cornell Med Coll, Brain & Mind Res Inst, New York, NY USA
[4] Cornell Univ, Nancy E & Peter C Meinig Sch Biomed Engn, Ithaca, NY 14853 USA
关键词
Machine learning; Resting-state; Functional MRI; Intrinsic networks; Brain connectivity; FUNCTIONAL CONNECTIVITY PATTERNS; INDEPENDENT COMPONENT ANALYSIS; BRAIN CONNECTIVITY; ALZHEIMERS-DISEASE; MAJOR DEPRESSION; DYNAMIC CONNECTIVITY; SUSTAINED ATTENTION; SLEEP-DEPRIVATION; CEREBRAL-CORTEX; NETWORKS;
D O I
10.1016/j.mri.2019.05.031
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Machine learning techniques have gained prominence for the analysis of resting-state functional Magnetic Resonance Imaging (rs-fMRI) data. Here, we present an overview of various unsupervised and supervised machine learning applications to rs-fMRI. We offer a methodical taxonomy of machine learning methods in restingstate fMRI. We identify three major divisions of unsupervised learning methods with regard to their applications to rs-fMRI, based on whether they discover principal modes of variation across space, time or population. Next, we survey the algorithms and rs-fMRI feature representations that have driven the success of supervised subjectlevel predictions. The goal is to provide a high-level overview of the burgeoning field of rs-fMRI from the perspective of machine learning applications.
引用
收藏
页码:101 / 121
页数:21
相关论文
共 169 条
[1]   Network diffusion accurately models the relationship between structural and functional brain connectivity networks [J].
Abdelnour, Farras ;
Voss, Henning U. ;
Raj, Ashish .
NEUROIMAGE, 2014, 90 :335-347
[2]   Deriving reproducible biomarkers from multi-site resting-state data: An Autism-based example [J].
Abraham, Alexandre ;
Milham, Michael P. ;
Di Martino, Adriana ;
Craddock, R. Cameron ;
Samaras, Dimitris ;
Thirion, Bertrand ;
Varoquaux, Gael .
NEUROIMAGE, 2017, 147 :736-745
[3]  
Abraham A, 2013, LECT NOTES COMPUT SC, V8150, P607, DOI 10.1007/978-3-642-40763-5_75
[4]   Replicability of time-varying connectivity patterns in large resting state fMRI samples [J].
Abrol, Anees ;
Damaraju, Eswar ;
Miller, Robyn L. ;
Stephen, Julia M. ;
Claus, Eric D. ;
Mayer, Andrew R. ;
Calhoun, Vince D. .
NEUROIMAGE, 2017, 163 :160-176
[5]   Tracking Whole-Brain Connectivity Dynamics in the Resting State [J].
Allen, Elena A. ;
Damaraju, Eswar ;
Plis, Sergey M. ;
Erhardt, Erik B. ;
Eichele, Tom ;
Calhoun, Vince D. .
CEREBRAL CORTEX, 2014, 24 (03) :663-676
[6]   The quest for identifiability in human functional connectomes [J].
Amico, Enrico ;
Goni, Joaquin .
SCIENTIFIC REPORTS, 2018, 8
[7]   Activity and connectivity of brain mood regulating circuit in depression: A functional magnetic resonance study [J].
Anand, A ;
Li, Y ;
Wang, Y ;
Wu, JW ;
Gao, SJ ;
Bukhari, L ;
Mathews, VP ;
Kalnin, A ;
Lowe, MJ .
BIOLOGICAL PSYCHIATRY, 2005, 57 (10) :1079-1088
[8]  
[Anonymous], 2010, ADV NEURAL INFORM PR
[9]  
[Anonymous], 2009, NEUROIMAGE, V47, DOI [10.1016/S1053-8119(09)71511-3, DOI 10.1016/S1053-8119(09)71511-3]
[10]   Single subject prediction of brain disorders in neuroimaging: Promises and pitfalls [J].
Arbabshirani, Mohammad R. ;
Plis, Sergey ;
Sui, Jing ;
Calhoun, Vince D. .
NEUROIMAGE, 2017, 145 :137-165