IN SITU TRANSESTERIFICATION OF MICROALGAE WITH HIGH FREE FATTY ACID USING SOLID ACID AND ALKALI CATALYST

被引:0
|
作者
Ma, Guixia [1 ,2 ]
Hu, Wenrong [1 ,3 ]
Pei, Haiyan [1 ,3 ]
Song, Mingming [1 ]
Qi, Feng [2 ]
机构
[1] Shandong Univ, Sch Environm Sci & Engn, Jinan 250100, Peoples R China
[2] Shandong Jianzhu Univ, Sch Municipal & Environm Engn, Jinan 250101, Peoples R China
[3] Shandong Prov Engn Ctr Environm Sci & Technol, Jinan 250061, Peoples R China
来源
FRESENIUS ENVIRONMENTAL BULLETIN | 2015年 / 24卷 / 01期
关键词
Microalgae; Transesterification; Solid acid; Fatty acid methyl esters; BIODIESEL PRODUCTION; WET MICROALGAE; OIL; EXTRACTION;
D O I
暂无
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In situ transesterification of microalgae Chlorella vulgaris with high free fatty acid (FFA) using solid acid and alkali catalyst (two-step transesterification) has been evaluated. The highest fatty acid methyl esters (FAME) yield of 35.50 +/- 1.27 mg/g biomass was provided at the optimal conditions as follows: in the first step, 10 wt. % of solid acid (Amberlyst BD20) and reaction time of 50 min; in the second step, 4 wt. % of KOH for 40 min. The FAME yield obtained by two - step pre-esterification and transterification was three times more than that achieved by one-step alkali-catalyzed conversion, and the products were more suitable for biodiesel standards.
引用
收藏
页码:90 / 95
页数:6
相关论文
共 50 条
  • [1] Simultaneous Free Fatty Acid Esterification and Triglyceride Transesterification Using a Solid Acid Catalyst with in Situ Removal of Water and Unreacted Methanol
    Suwannakarn, Kaewta
    Lotero, Edgar
    Ngaosuwan, Kanokwan
    Goodwin, James G., Jr.
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2009, 48 (06) : 2810 - 2818
  • [2] In situ transesterification of highly wet microalgae using hydrochloric acid
    Kim, Bora
    Im, Hanjin
    Lee, Jae W.
    BIORESOURCE TECHNOLOGY, 2015, 185 : 421 - 425
  • [3] Ultrasound assisted transesterification of microalgae using synthesized novel catalyst
    Cercado, Alberto Paulo
    Ballesteros, Florencio, Jr.
    Capareda, Sergio
    SUSTAINABLE ENVIRONMENT RESEARCH, 2018, 28 (05) : 234 - 239
  • [4] Transesterification method of microalgae biomass to produce fatty acid methyl esters
    Yasin, Nur Hidayah Mat
    Aziz, Nur Nadiah Che
    Azmai, Muhammad Badrun Amin
    Hanapi, Mohamad Fitri Mohd
    JOURNAL OF CHEMICAL TECHNOLOGY AND BIOTECHNOLOGY, 2023, 98 (11) : 2774 - 2783
  • [5] Conversion of wet microalgae to biodiesel with microalgae carbon based magnetic solid acid catalyst
    Shen, Yu
    Zhang, Qi
    Sun, Xiaolong
    Zhang, Yingshi
    Cai, Qilin
    Deng, Weifeng
    Rao, Shuhui
    Wu, Xi
    Ye, Qing
    ENERGY CONVERSION AND MANAGEMENT, 2023, 286
  • [6] Evaluation and optimization of two stage sequential in situ transesterification process for fatty acid methyl ester quantification from microalgae
    Kumar, Vikram
    Muthuraj, Muthusivaramapandian
    Palabhanvi, Basavaraj
    Ghoshal, Aloke Kumar
    Das, Debasish
    RENEWABLE ENERGY, 2014, 68 : 560 - 569
  • [7] In situ transesterification of Chlorella sp. microalgae using LiOH-pumice catalyst
    de Luna, Mark Daniel G.
    Doliente, Lorenzo Miguel T.
    Ido, Alexander L.
    Chung, Tsair-Wang
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2017, 5 (03): : 2830 - 2835
  • [8] Two-step in situ biodiesel production from microalgae with high free fatty acid content
    Dong, Tao
    Wang, Jun
    Miao, Chao
    Zheng, Yubin
    Chen, Shulin
    BIORESOURCE TECHNOLOGY, 2013, 136 : 8 - 15
  • [9] Biodiesel Production from High Free Fatty Acid Oils Using a Bifunctional Solid Catalyst
    Jeong, Sang-Hyun
    Lee, Hwa-Sung
    Kim, Deog-Keun
    Lee, Joon-Pyo
    Park, Ji-Yeon
    Hwang, Kyung-Ran
    Lee, Jin-Suk
    TOPICS IN CATALYSIS, 2017, 60 (9-11) : 651 - 657
  • [10] In Situ Transesterification of Marine Microalgae Biomass via Heterogeneous Acid Catalysis
    Zorn, Savienne M. F. E.
    Reis, Cristiano E. R.
    Bento, Heitor B. S.
    de Carvalho, Ana Karine F.
    Silva, Messias B.
    De Castro, Heizir F.
    BIOENERGY RESEARCH, 2020, 13 (04) : 1260 - 1268