Lagrangian decomposition of block-separable mixed-integer all-quadratic programs

被引:5
|
作者
Nowak, N [1 ]
机构
[1] Humboldt Univ, Inst Math, D-12489 Berlin, Germany
关键词
semidefinite programming; quadratic programming; combinatorial optimization; non-convex programming; decomposition;
D O I
10.1007/s10107-003-0500-9
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The purpose of this paper is threefold. First we propose splitting schemes for reformulating non-separable problems as block-separable problems. Second we show that the Lagrangian dual of a block-separable mixed-integer all-quadratic program (MIQQP) can be formulated as an eigenvalue optimization problem keeping the block-separable structure. Finally we report numerical results on solving the eigenvalue optimization problem by a proximal bundle algorithm applying Lagrangian decomposition. The results indicate that appropriate block-separable reformulations of MIQQPs could accelerate the running time of dual solution algorithms considerably.
引用
收藏
页码:295 / 312
页数:18
相关论文
共 50 条
  • [22] DECOMPOSITION METHODS FOR GLOBAL SOLUTION OF MIXED-INTEGER LINEAR PROGRAMS
    Sun, Kaizhao
    Sun, Mou
    Yin, Wotao
    SIAM JOURNAL ON OPTIMIZATION, 2024, 34 (02) : 1206 - 1235
  • [23] Solving Mixed-Integer Quadratic Programs via Nonnegative Least Squares
    Bemporad, Alberto
    IFAC PAPERSONLINE, 2015, 48 (23): : 73 - 79
  • [24] Gap inequalities for non-convex mixed-integer quadratic programs
    Galli, Laura
    Kaparis, Konstantinos
    Letchford, Adam N.
    OPERATIONS RESEARCH LETTERS, 2011, 39 (05) : 297 - 300
  • [25] Gap inequalities for non-convex mixed-integer quadratic programs
    DEIS, University of Bologna, Viale Risorgimento 2, 40136 Bologna, Italy
    不详
    Oper Res Lett, 5 (297-300):
  • [26] Convex quadratic relaxations for mixed-integer nonlinear programs in power systems
    Hijazi H.
    Coffrin C.
    Hentenryck P.V.
    Mathematical Programming Computation, 2017, 9 (3) : 321 - 367
  • [27] Mixed-integer quadratic programming is in NP
    Del Pia, Alberto
    Dey, Santanu S.
    Molinaro, Marco
    MATHEMATICAL PROGRAMMING, 2017, 162 (1-2) : 225 - 240
  • [28] MIXED-INTEGER QUADRATIC-PROGRAMMING
    LAZIMY, R
    MATHEMATICAL PROGRAMMING, 1982, 22 (03) : 332 - 349
  • [29] Lagrangian solution techniques and bounds for loosely coupled mixed-integer stochastic programs
    Takriti, S
    Birge, JR
    OPERATIONS RESEARCH, 2000, 48 (01) : 91 - 98
  • [30] Mixed-integer quadratic programming is in NP
    Alberto Del Pia
    Santanu S. Dey
    Marco Molinaro
    Mathematical Programming, 2017, 162 : 225 - 240