NiO/Perovskite Heterojunction Contact Engineering for Highly Efficient and Stable Perovskite Solar Cells

被引:212
|
作者
Zhang, Bingjuan [1 ]
Su, Jie [1 ]
Guo, Xing [1 ]
Zhou, Long [1 ,2 ]
Lin, Zhenhua [1 ]
Feng, Liping [3 ]
Zhang, Jincheng [1 ]
Chang, Jingjing [1 ]
Hao, Yue [1 ]
机构
[1] Xidian Univ, State Key Discipline Lab Wide Band Gap Semicond T, Shaanxi Joint Key Lab Graphene, Adv Interdisciplinary Res Ctr Flexible Elect,Sch, 2 South Taibai Rd, Xian 710071, Peoples R China
[2] Univ N Carolina, Dept Appl Phys Sci, Chapel Hill, NC 27599 USA
[3] Northwestern Polytech Univ, State Key Lab Solidificat Proc, Xian 710072, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
buffer layers; contact engineering; lattice mismatches; NiO; perovskite solar cells; ORGANOMETAL TRIHALIDE PEROVSKITE; DOPED NICKEL-OXIDE; HALIDE PEROVSKITES; THERMAL-EXPANSION; HIGH-PERFORMANCE; LAYER; COEFFICIENT; EXTRACTION; STABILITY; DYNAMICS;
D O I
10.1002/advs.201903044
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Recent research shows that the interface state in perovskite solar cells is the main factor which affects the stability and performance of the device, and interface engineering including strain engineering is an effective method to solve this issue. In this work, a CsBr buffer layer is inserted between NiOx hole transport layer and perovskite layer to relieve the lattice mismatch induced interface stress and induce more ordered crystal growth. The experimental and theoretical results show that the addition of the CsBr buffer layer optimizes the interface between the perovskite absorber layer and the NiOx hole transport layer, reduces interface defects and traps, and enhances the hole extraction/transfer. The experimental results show that the power conversion efficiency of optimal device reaches up to 19.7% which is significantly higher than the efficiency of the device without the CsBr buffer layer. Meanwhile, the device stability is also improved. This work provides a deep understanding of the NiOx/perovskite interface and provides a new strategy for interface optimization.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Contact Engineering: Electrode Materials for Highly Efficient and Stable Perovskite Solar Cells
    Xiao, Jia-Wen
    Shi, Congbo
    Zhou, Chenxiao
    Zhang, Deliang
    Li, Yujing
    Chen, Qi
    SOLAR RRL, 2017, 1 (09):
  • [2] Interface engineering with NiO nanocrystals for highly efficient and stable planar perovskite solar cells
    Zhang, Weina
    Zhang, Xuezhen
    Wu, Tongyue
    Sun, Weihai
    Wu, Jihuai
    Lan, Zhang
    ELECTROCHIMICA ACTA, 2019, 293 : 211 - 219
  • [3] Additive engineering for highly efficient and stable perovskite solar cells
    Lee, Do-Kyoung
    Park, Nam-Gyu
    APPLIED PHYSICS REVIEWS, 2023, 10 (01)
  • [4] Interface Engineering for Highly Efficient and Stable Perovskite Solar Cells
    Zhao, Chenxu
    Zhang, Hong
    Krishna, Anurag
    Xu, Jia
    Yao, Jianxi
    ADVANCED OPTICAL MATERIALS, 2024, 12 (07)
  • [5] Defect Engineering toward Highly Efficient and Stable Perovskite Solar Cells
    Li, Bowei
    Ferguson, Victoria
    Silva, S. Ravi P.
    Zhang, Wei
    ADVANCED MATERIALS INTERFACES, 2018, 5 (22):
  • [6] Pseudohalide anion engineering for highly efficient and stable perovskite solar cells
    Chu, Liang
    MATTER, 2021, 4 (06) : 1762 - 1764
  • [7] Hetero-perovskite engineering for stable and efficient perovskite solar cells
    Cheng, Xiaohua
    Han, Ying
    Cui, Bin-Bin
    SUSTAINABLE ENERGY & FUELS, 2022, 6 (14) : 3304 - 3323
  • [8] Highly efficient and stable perovskite solar cells produced by maximizing additive engineering
    Qiu, Linlin
    Zou, Jiacheng
    Chen, Wei-Hsiang
    Dong, Lika
    Mei, Deqiang
    Song, Lixin
    Wang, Jieqiong
    Jiang, Pei-Cheng
    Du, Pingfan
    Xiong, Jie
    SUSTAINABLE ENERGY & FUELS, 2021, 5 (02): : 469 - 477
  • [9] A review on morphology engineering for highly efficient and stable hybrid perovskite solar cells
    Li, Yang
    Ji, Li
    Liu, Rugeng
    Zhang, Chengxi
    Mak, Chun Hong
    Zou, Xingli
    Shen, Hsin-Hui
    Leu, Shao-Yuan
    Hsu, Hsien-Yi
    JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (27) : 12842 - 12875
  • [10] Dual Interfacial Modification Engineering for Highly Efficient and Stable Perovskite Solar Cells
    Liu, Le
    Liu, Dali
    Sun, Rui
    Zhou, Donglei
    Wu, Yanjie
    Zhuang, Xinmeng
    Liu, Shuainan
    Bi, Wenbo
    Wang, Nan
    Zi, Lu
    Zhang, Boxue
    Shi, Zhichong
    Song, Hongwei
    SOLAR RRL, 2021, 5 (03):